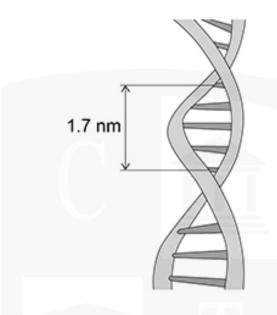


Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

BIOLOGY


GENETICS, BIODIVERSITY & CLASSIFICATION

Level & Board	AQA (A-LEVEL)
TOPIC:	Transcription & Translation
PAPER TYPE:	QUESTION PAPER - 1
TOTAL QUESTIONS	6
TOTAL MARKS	39

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Transcription and Translation - 1

1. A portion of a DNA molecule is shown in the diagram below.

(a) Identify the kind of link that exists between (2) complimentary base pairs

neighboring DNA strand nucleotides

(b) The amount of nucleotide base pairs a gene contains is used to determine its length.

Utilizing the data in the diagram above, determine the length of a gene with 4.38×10^3 base pairs. (2)

	Answer	nm
(c) List two distinct compositions. (2)	ions between the tRNA and mRNA molecu	ıles structural
1.		
2.		
(D. T. D.)		
	A generated by transcription and the mistinct structures in eukaryotic cells.	RNA used in
Give an explanation	n for the variations in these mRNA molecule	es structures.
		(2)

(a) Explain the process by which a polypeptide is generated at a ribosome during translation when one amino acid is added. (3)

3.

(a) Explain the process by which exposed template DNA strands are converted into mRNA.

In your response, do not mention splicing or DNA helicase. (3)

Some amino acid mRNA codons are displayed in the table below.

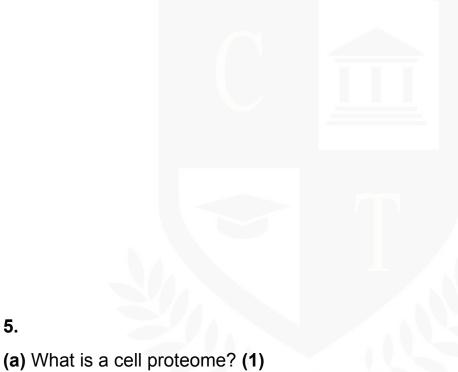
Serine	Proline	Glycine	Threonine	Alanine
UCU	CCU	GGA	ACU	GCA
UCC	CCA	GGG	ACC	GCG

(b) The nucleotide base sequence of the DNA template, which establishes the order of four amino acids, is displayed in **Figure 1**.

Figure 1

AGG CGT CCT GGA

Provide the amino acid sequence determined by this nucleotide sequence using the data in the table and **Figure 1**. **(1)**


(a) Explain how transcription produces mRNA in eukaryotes. (5)

(b) Explain how mRNA translation results in the formation of a polypeptide.

(6)

am Sorry !!!!

(b) List the two structural variations between a transfer RNA (tRNA) and a messenger RNA (mRNA) molecule. (2)

(c) Explain the process by which translation results in the synthesis of a polypeptide, beginning with mRNA in the cytoplasm.

In your response, do not go into detail about transcription and splicing. (5)

The amino acids that each mRNA codon codes for are displayed in **Table 1**. Additionally, it displays a few characteristics of each amino acid R group.

Table 1

1st base	2nd base			3rd base	
131 2030	U	С	Α	G	or ar base
U	Phe		T	0-	U
	Phe	Ser	Tyr	Cys	С
	Leu		Stop	Stop	A
	Leu		Stop	Trp	G
C Let			His	Arg	U
	Lou	Pro			С
	Leu	eu Fio	Gin		A
					G
A lle		Thr	Asn	Ser	U
	A He Thr Lys		ASH	-50	С
			lvs	Arg	Α
		Alg	G		
G	Val Ala		Asp	Gly	U
		Δla			С
		Ma	Glu		Α
					G

Key to the properties of the R group of each amino acid

No overall change	Positively charged	Negatively charged
7) N=	20	3/2

(b) It is said that the genetic code is degenerate.

What does this mean? Provide an example from Table 1 to support your response. (2)

A scientist looked into how mutations affected a human enzyme's amino acid sequence. Mutations involving single base substitution are the cause of all these alterations in amino acids.

This enzyme is a 465 amino acid polypeptide.

The outcomes of three base substitutions are displayed in **Table 2**.

Table 2

Amino acid number	Correct amino acid	Amino acid inserted as a result of mutation
203	Val	Ala
279	Glu	Lys
300	Glu	Lys

(c) How many nucleotides must be present in the gene encoding this polypeptide? (1)

- · Founder & CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- · CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- · Website: www.chemistryonlinetuition.com
- $\cdot \ {\sf Email: asherrana@chemistryon line tuition.com}$

Address: 210-Old Brompton Road, London SW5 OBS, UK