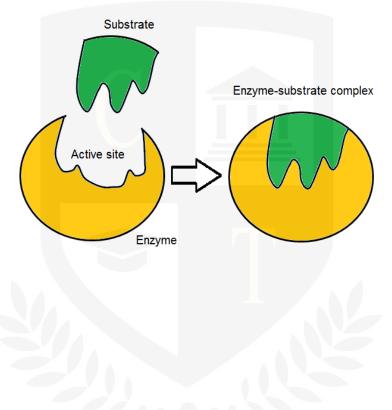


Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonlinetuition.com

BIOLOGY


BIOLOGICAL MOLECULES

LEVEL & BOARD:	AQA (A - LEVEL)
TOPIC: Enzymes	
PAPER TYPE:	QUESTION PAPER 2
TOTAL QUESTIONS	03
TOTAL MARKS	25

Enzyme and protein 2

1.

(a) The rate of reaction is accelerated by the creation of an enzyme-substrate complex. Explain how? Diagram that is given below show enzyme-substrate complex. (2)

(b) The rate of amino acid removal from a polypeptide with and without an enzyme present was measured by a scientist. 578 amino acids were released every second while the enzyme was present. 3.0 10-9 amino acids were released every second in the absence of the enzyme.

Determine how many times the presence of the enzyme increases the pace of the reaction.

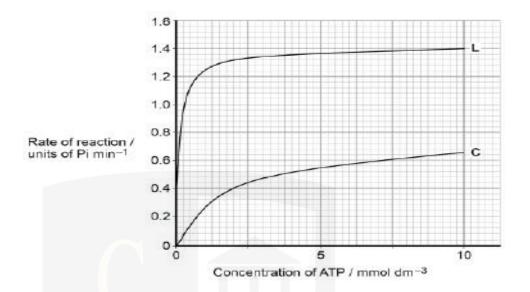
Give a formal response to the question.

Answer = ______times faster

Another researcher looked at the enzyme that triggers the subsequent reaction.

$$ATP \rightarrow ADP + Pi$$

Two experiments, C and L, were set up by the scientists.


Experiment C was used

- the enzyme
- different concentrations of ATP.

Experiment L was used

- the enzyme
- different concentrations of ATP
- a sugar called lyxose.

In each experiment, the scientists measured the pace of reaction. The graph displays their findings.

(c) Calculate the enzyme's reaction rate as a percentage of the maximum rate demonstrated with lyxose at 2.5 mmol dm⁻³ of ATP. Structure of lyxose is shown below. (2)

CHEMISTRY ONLINE

Answer =%

(d) The enzyme binds to lyxose. (3)

Give an explanation for why the findings on the graph with and without lyxose differ.

(a) Create a diagram showing an amino acid's general structure. (1)

Table 1 lists the mRNA codons and the amino acids that each codon codes for. Additionally, it demonstrates a few traits of each amino acid's R group.

2.

Table 1

1st base	2nd base			3rd base		
.50.50	U	С	Α	G	ord Buse	
U -	Phe		Tyr	Cys	U	
		Leu Ser			С	
	Lou			Ston	Stop	A
	Leu		Stop	Trp	G	
С			His	Arg	U	
	Leu	Loui Dec			C	
	Leu	Pro	Gin		Α	
					G	
A lle	lle Th.	25	Asn	Ser	U	
		The			С	
		Thr	Euro	Aca.	A	
	Met		Arg	G		
G	Val Ala	2	Asp	Gly	U	
		01-			С	
		Ala	01		Α	
		Glu		G		

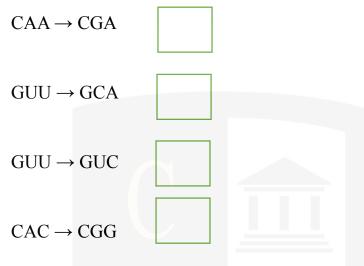
Important cl	haracteristics of each an	nino acids R group	
	No overall change	Positively charged	Negatively charged
(b) It is said	that the genetic code is	degenerate. (2)	
What is mea	ant by this? Use an exan	nple from Table 1 to demons	strate your answer.

A researcher looked into how mutations affected the amino acid sequence of a human enzyme. Mutations caused by a single base substitution are the cause of all these amino acid alterations.

A polypeptide with 465 amino acids makes up this enzyme.

Three of the base substitutions' results are shown in **Table 2**.

Table 2


Amino number	Acid	Correct amino acid	Amino acid inserted as a result of mutation
203		Val	Ala
279		Glu	Lys
300		Glu	Lys

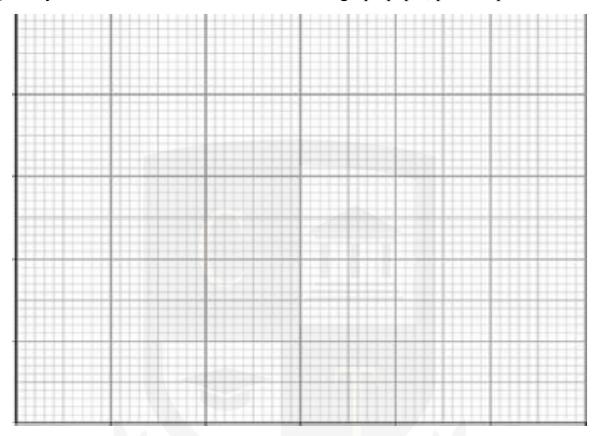
(c) How many bases must there be in the gene that codes for this polypeptide? (1)

Answer =

(d) Use the data in Table 1 to check () the box that represents a DNA mutation that would cause the amino acid number 203 to shift from Val to Ala due to a single base substitution. (1)

(e) The rate of reaction that the enzyme catalyzed was unaffected by the substitution of Lys for Glu at amino acid 300. The rate of reaction that the enzyme catalyzed was dramatically decreased by the same alteration at amino acid 279 in the chain.

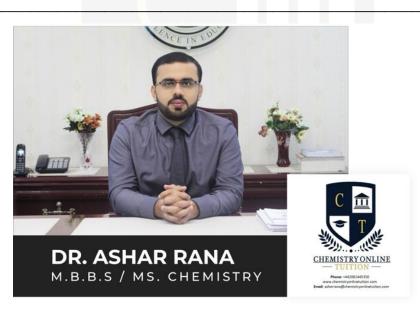
Use all the data and your understanding of protein structure to propose explanations for the variations in the outcomes of these two alterations. (3)


3. A protease was extracted from a bacterium by a scientist. He looked at how the temperature affected how quickly this protease hydrolyzed a protein. At each temperature, he measured the mass of protein hydrolyzed in 5 minutes.

The table below displays the outcomes.

Temperature / °C	_	Rate of hydrolysis /
	hydrolysed / g	
		•••••
5	0.48	
10	1.11	
15	1.23	
20	1.05	
30	0.78	
45	0.12	

(a) Analyze the information in the table. On the graph paper, plot the processed data.4


(b) A student came to the conclusion that the bacterium can survive at 15 °C from a graph of the data in the table.

Does the information back up the student's interpretation? Explicitly justify your response. (4)

(c) Propose two factors that the biochemist controlled when examining the impact of temperature on the protease's ability to break down proteins quickly.

1.

2.

- · Founder & CEO of Chemistry Online Tuition Ltd.
- · Completed Medicine (M.B.B.S) in 2007
- \cdot 15 years of teaching experience in London
- · CIE & EDEXCEL Examiner since 2015
- · Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- · International Phone/WhatsApp: 00442081445350
- · Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- · Address: 210-Old Brompton Road, London SW5 OBS, UK

REQUEST LESSON