

### Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

# **CHEMISTRY** INORGANIC CHEMISTRY

| Level & Board   | AQA (A-LEVEL)   |
|-----------------|-----------------|
|                 |                 |
| TOPIC:          | GROUP 7 HALOGEN |
| PAPER TYPE:     | SOLUTION - 2    |
|                 |                 |
| TOTAL QUESTIONS | 10              |
|                 |                 |
| TOTAL MARKS     | 34              |

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

### Group 7 the Halogens - 2

#### I. B

(1)

## 2.

(a)

Random movement of electrons in one molecule:

• The electrons within a chlorine molecule undergo random movement. A (temporary) dipole is formed in one molecule / an imbalance in electron density in one molecule:

• Due to the random movement, a temporary dipole is created in one chlorine molecule, causing an imbalance in electron density.

Induces a dipole in a neighboring molecule:

• This temporary dipole induces a corresponding dipole in a nearby chlorine molecule.

#### Temporary dipoles attract / temporary attraction between $\delta$ + and $\delta$ -:

 The temporary dipoles result in an attraction between the δ+ (positive end) of one molecule and the δ- (negative end) of the neighboring molecule.

So, the random movement of electrons leads to temporary dipoles, and the resulting attraction between the  $\delta$ + and  $\delta$ - ends of neighboring molecules contributes to the overall weak intermolecular forces, specifically dispersion forces, in chlorine.

(3)

### (b)

Equation:

 $Cl_2 + H_20 \rightleftharpoons HCl + HCl0$ 

Chlorine is added to drinking water because it kills bacteria / microbes so, it disinfect water.

### (c) Equation: $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$

3. A

()

 $(\mathbf{I})$ 

### 4.

(a)

The reaction of solid sodium bromide (NaBr) with concentrated sulfuric acid ( $H_2$  SO<sub>4</sub>) to form bromine gas (Br<sub>2</sub>) can be represented by the following chemical equation:

$$2NaBr(s)+2H_2SO_4(conc) \rightarrow Br_2(q)+Na_2SO_4(aq)+H_2O+SO_2$$

One observation during this reaction is the evolution of brown fumes, which indicates the formation of bromine gas. The brown color is characteristic of elemental bromine.

### (b)

#### Dilute nitric acid is added to the solution:

 $HNO_3$  removes (hydroxide/carbonate) ions that may give other ppts with  $AqNO_3$ :

**Explanation:** Dilute nitric acid is added to the solution to remove carbonate ions  $(CO_3^{2-})$  that could form insoluble silver carbonate  $(Ag_2 CO_3)$  upon the addition of silver nitrate.

#### Aqueous silver nitrate is added to the solution:

AgNO<sub>3</sub> produces ppts with chloride/iodide/halide **Explanation:** Silver nitrate reacts with chloride, iodide, and other halide ions to form insoluble silver halide precipitates, such as AgCl and AgI.

 $\begin{array}{l} \operatorname{Ag^{+}}(aq) + \operatorname{Cl^{-}}(aq) \to \operatorname{AgCl}(s) \\ \operatorname{Ag^{+}}(aq) + \operatorname{l^{-}}(aq) \to \operatorname{Agl}(s) \end{array}$ 

NH<sub>3</sub> dissolves AgCl (leaving yellow AgI):

(2)

**Explanation:** Excess dilute aqueous ammonia  $(NH_3)$  is added to dissolve the silver chloride (AgCI) precipitate, forming a soluble complex  $(Ag(NH_3)_2^+)$ , while the yellow AgI precipitate remains.

Excess dilute aqueous ammonia is added to the mixture:  $AgCl(s) + 2NH_3 (aq) \rightarrow Ag(NH_3)_2 + (aq) + Cl^- (aq)$ Explanation: This equation represents the reaction of silver chloride with excess ammonia, resulting in the formation of a soluble complex ion  $(Ag(NH_3)_2 + )$  and chloride ions.

(5)

#### 5.

#### Reason for Water Treatment with Chlorine:

- Sterilize water / disinfect water or kill microbes.
- Why Chlorine is Added to Water Despite its Toxicity:
- The health benefits of sterilizing water outweigh the risks. Chlorine is used only in small quantities or low concentrations.

#### Equation for the Reaction of Chlorine with Cold Water:

### $Cl_2(g) + H_2O(I) \rightleftharpoons HCK(aq) + HClO(aq)$

This reversible equation represents the reaction of chlorine gas with cold water, forming hydrochloric acid (HCl) and hypochlorous acid (HClO). The hypochlorous acid acts as a disinfectant, providing health benefits in water treatment.

#### (3)

#### 6. B

()

7.

Half-equation for the Conversion of Iodide ions to Iodine:  $2I^{-} \rightarrow I_{2}+2e^{-}$ Half-equation for the Conversion of Sulfuric Acid to Sulfur:  $H_{2}SO_{4}+6H^{+}+6e^{-} \rightarrow S+4H_{2}O$ Overall Redox Reaction:  $6H^{+}+6I^{-}+H_{2}SO_{4} \rightarrow 3I_{2}+S+4H_{2}O$ 

Identified Sulfur-containing Reduction Product: Sulfur ( $S_8$ ) is formed as one of the reduction products when solid sodium iodide reacts with concentrated sulfuric acid.

(4)

#### 8. D

#### 9.

(a)

When silver nitrate solution is added to sodium fluoride the solution becomes Colourless i.e. no visible change.

$$AgNO_3(aq) + NaF(aq) \rightarrow AgF(s) + NaNO_3(aq)$$

#### (b)

**Observation:** Misty or steamy or white fumes/gas are observed. **Equation for the Reaction:**   $2NaCl(s)+H_2SO_4(conc) \rightarrow Na_2SO_4(aq)+2HCl(g)$  **Role of Chloride Ions (Base or Proton Acceptor):** The chloride ions (Cl<sup>-</sup>) from sodium chloride act as a base or proton

acceptor. In the presence of concentrated sulfuric acid, chloride ions accept protons (H<sup>+</sup>) to form hydrogen chloride gas (HCl). The overall reaction can be represented as:

 $Cl^{-}(aq) + H^{+}(aq) \rightarrow HCl(q)$ 

### (c)

Equation for the redox reaction between solid sodium bromide and concentrated sulfuric acid

 $2NaBr + 2H_2SO_4 \rightarrow Na_2SO_4 + Br_2 + SO_2 + 2H_2O$ 

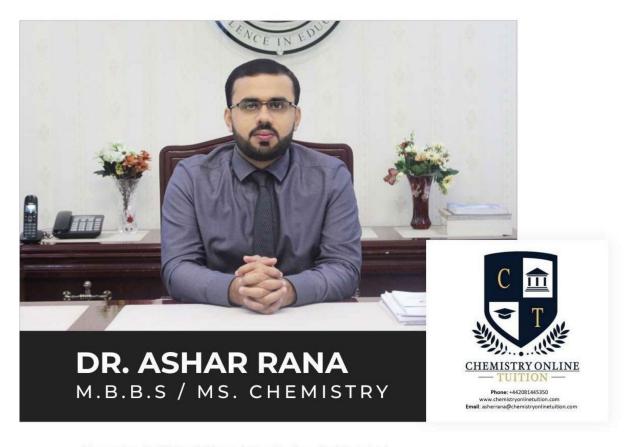
This is a redox reactionas: Br changes oxidation state from –I NaBr to 0 (Br2) and is oxidised S changes oxidation state from +6 (H2SO4) to +4 (SO2) and is reduced

(3)

(3)

#### am Sorry IIIII (d)

#### / Observation:


A yellow / orange solution is observed. Ionic Equation for the Reaction: Cl₂(aq)+2Br-(aq)→2Cl-(aq)+Br₂(aq)  $(\mathbf{I})$ 

()

#### 10. C

www.chemistryonlinetuition.com

🖂 asherrana@chemistryonlinetuition.com



- Founder & CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

am Sorry !!!!

#### CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK