

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY INORGANIC CHEMISTRY

Level & Board	AQA (A-LEVEL)
TOPIC:	GROUP 7 HALOGEN
PAPER TYPE:	SOLUTION - 4
TOTAL QUESTIONS	10
TOTAL MARKS	46

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Group 7 the Halogens - 4

1.
(a)

$$i.$$

 $cl_2 + 2l^- \rightarrow l_2 + 2cl^-$
(l)
 $ii.$

Observation: Solution from colourless to changes brown / redbrown solution.

()

(b)

Equation $2Cl_2 + 2H_2O \rightarrow 4HCl + O_2$

()

(c)

Chlorine (C_{2}) has a lower boiling point than bromine (Br_{2}) due to: **Relative Size :** Chlorine is smaller than bromine. So it has weaker intermolecular forces

Effect on Intermolecular Forces: Weaker forces between chlorine molecules result in less energy needed to separate them.

(2)

()

2. C

I am Sorry !!!!!

3. (a)

Initiation Step: UV light

$$Cl_2 \rightarrow 2Cl^2$$

First Propagation Step: $Cl^{+}CH_{3}CH_{3} \rightarrow CH_{2}CH_{3}+HCl$ Second Propagation Step: $Cl_{2}+CH_{2}CH_{3} \rightarrow CH_{3}CH_{2}Cl+HCl$

Termination Step (producing butane): $2^{CH_2CH_3 \rightarrow C_4H_{10}}$

(b)

One essential condition: ultra-violet /sun light OR high temperature Mechanism: (free-)radical substitution

(2)

 (\mathbf{l})

(4)

4. D

5.

(a)

Trend: The electronegativity decreases down Group VII. **Explanation:** The electronegativity decreases down Group due to as number of shells

increases or atomic radius increases so less attraction for bond (pair of electrons) is observed.

I am Sorry !!!!!

(b)

Observation when chlorine gas is bubbled into an aqueous solution of potassium iodide: brown solution or it is black solid

Equation: $Cl_2 + 2Kl \rightarrow 2KCl + l_2$

(2)

(c)

When concentrated sulfuric acid oxidizes iodide ions, two sulfurcontaining reduction products are formed: sulfur dioxide (SO_2) and hydrogen sulfide (H_2S).

 $SO_4^{-2}+4H^+ + 2e^- \rightarrow SO_2+2H_2O$ $SO_4^{-2}+10H^+ + 6e^- \rightarrow H_2S+4H_2O$

(4)

(d)

 $Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O$ Oxidation state of chlorine in: Sodium chloride: -1 Sodium chlorate(1) (or bleach etc):+1

(5)

6.

Equation for the Reaction of Chlorine with Water in Sunlight:

 $2Cl_2+2H_2O\rightarrow 4HCl+O_2$

Name of the White Precipitate:

Silver Chloride (AqCl)

Observation when Excess Aqueous Ammonia is Added to the White Precipitate: The solid/precipitate dissolves and forms a (colourless) solution.

7.

The three reduction products and give the oxidation state of sulphur Sulfur Dioxide: Oxidation State of Sulfur: +4 Elemental Sulfur (Sulfur): Oxidation State of Sulfur: 0 Hydrogen Sulfide: Oxidation State of Sulfur: -2

(b)

(a)

Observations:

Sulfur Dioxide (SO2):
Observation: Sulfur dioxide is a choking gas or has a pungent odor.
Elemental Sulfur (Sulfur):
Observation: Sulfur is a yellow solid.
Hydrogen Sulfide (H2S):
Observation: Hydrogen sulfide has a smell of bad eggs.

(4)

(3)

(c)

 $SO_{4}^{2-} + 4H^{+} + 2e^{-} \rightarrow SO_{2} + 2H_{2}O$ $SO_{4}^{2-} + 8H^{+} + 6e^{-} \rightarrow S + 4H_{2}O$ $SO_{4}^{2-} + 10H^{+} + 8e^{-} \rightarrow H_{2}S + 4H_{2}O$

(3)

8. A

I am Sorry !!!!!

(1)

9.

Reducing Agent:

A reducing agent is an electron donor. So a reducing agent is a substance that undergoes oxidation and, in the process, donates electrons to another substance. It is an electron donor. In a chemical reaction, the reducing agent itself gets oxidized, leading to the reduction of the other substance. **Deduction of Half-Equation for Chlorine to Chloride Ions:**

 $Cl_2+2e \rightarrow 2Cl^-$

Iodide Ions as Stronger Reducing Agents:

Iodide ions are larger than chloride ions because electron(s) in iodide ions are less strongly held, making them stronger reducing agents.

(4)

10. C

()

<u>CHEMISTRY ONLINE</u> — TUITION —

I am Sorry !!!!!

DR. ASHAR RANA M.B.B.S / MS. CHEMISTRY

- Founder & CEO of Chemistry Online Tuition Ltd.
- · Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- · Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK