

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY INORGANIC CHEMISTRY

Level & Board	AQA (A-LEVEL)
TOPIC:	Group 2 Metals
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	10
TOTAL MARKS	24

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Group 2 Metals - I

Ι.

Reagent: Barium chloride (BaCl₂)

Observation with KNO₃ (aq): No visible reaction or precipitate formation. **Observation with K**₂ **SO**₄ (aq): Formation of a white precipitate or white solid. **Conclusion**: The formation of a white precipitate or white solid indicates the presence of sulfate ions, confirming the solution to be potassium sulfate $(K_2 SO_4)$.

2. A

 (\mathbf{r})

(3)

3.

Reagent: Sodium hydroxide (NaOH)

Observation with MgCl₂(aq): White precipitate forms in the solution. **Observation with AlCl₃(aq)**: White gelatinous precipitate forms in the solution, and it may dissolve in excess NaOH to give a colorless solution.

(3)

4. C

(1)

5.

(a) Equation:

 $2Mq + TiCl_4 \rightarrow Ti + 2MqCl_2$

Role of magnesium:

Magnesium (2Mg) acts as a reducing agent by providing electrons to reduce titanium tetrachloride (TiCl₄).

The magnesium undergoes oxidation, changing from an oxidation state of 0 to +2.

(2)

(b)

Moles of water in 210 mg: So water in 210 mg = 0.210 g Moles of water in 0.210g = mass / mr = 0.210 / 18 =0.0117 mol Equal to moles of magnesium hydroxide produced in stage one: Mass of Mg(OH)₂ = 0.0117 x 58.3 = 0.680 g Mass of magnesium oxide (MgO): Mass of MgO = 3.2 - 0.68 = 2.52 g % of MgO = $\frac{2.52}{3.2}$ x 100 = 78.7%

6. A

()

(4)

7.

Equation: $Ca + 2H_20 \rightarrow Ca(OH)_2 + H_2$ **Expected value for the pH: 8 – 12** The resulting solution is alkaline, and the pH is expected to be in the range of 8 to 12, influenced by the concentration of calcium hydroxide.

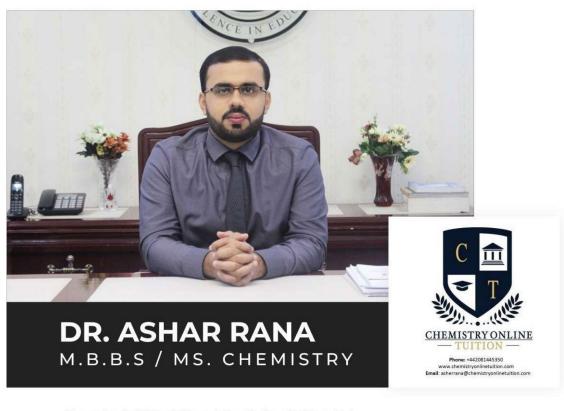
(b)

(a)

Solubility in water, of the Group 2 sulfates from magnesium to barium decreases. Because of increasing ionic size and decreasing lattice energy.

8.

The high melting point of calcium sulfate (CaSO₄) is due to the strong ionic bonds between the positively charged calcium ions (Ca²⁺) and the negatively charged sulfate ions (SO₄²⁻). This strong electrostatic attraction requires a significant amount of energy to break, resulting in a high melting point for the compound.


- 9. B
- 10. C

www.chemistryonlinetuition.com

🖂 asherrana@chemistryonlinetuition.com

()

()

- Founder & CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

Dr. A