

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY II

Level & Board	AQA (A-LEVEL)
TOPIC:	NMR SPECTROSCOPY
PAPER TYPE:	QUESTION PAPER - 4
TOTAL QUESTIONS	10
TOTAL MARKS	/39

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

NMR Spectroscopy - 4

1. There are several isomers with the molecular formula $C_6H_{16}N_2$

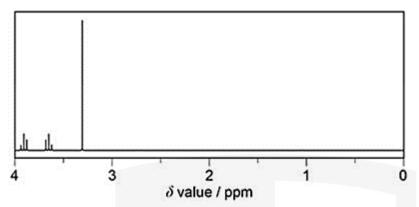
One isomer is shown.

 $H_{3}C - CH_{2}$ $H_{3}C - CH_{2}$ $N - CH_{2} - CH_{2} - NH_{2}$

(a) Give the number of peaks in the ¹³C NMR spectrum of this isomer.

State and explain the splitting pattern of the peak for the hydrogens labelled a in its ¹H NMR spectrum.

(b)Draw the structure of the isomer of C₆H₁₆N₂ that contains two primary amine groups and has only two peaks in its ¹³C NMR spectrum.


(c)Draw the structure of the isomer of C₆H₁₆N₂ that contains two tertiary amine groups and has only two peaks in its ¹³C NMR spectrum.

I am Sorry !!!!!

(1)

(3)

2. Figure shows the ¹H NMR spectrum of Q, C_3H_7CIO

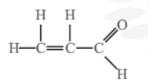
The table below shows the chemical shifts (δ values) and integration values for each peak.

δ value / ppm	3.95	3.65	3.35
Integration value	0.6	0.6	0.9

Deduce the structure of Q.

Explain your answer.

(5)


- **3.** Two isomers of CH₃CHClCOCH(CH₃)₂ each have two singlet peaks only in their ¹H NMR spectra.
- Deduce the structures of these two isomers.

4. Deduce the splitting pattern for each of the peaks given by the H atoms labelled x, y and z in the ¹H NMR spectrum of the compound shown.

у x CH₃CHClCOCH(CH₃)₂

(3)

5. The structural formula of the compound propenal is shown below

Explain why propenal has three peaks in its low-resolution n.m.r. spectrum.

Suggest the relative areas under the peaks.

I am Sorry !!!!!

6. When the molecular formula of a compound is known, spectroscopic and other analytical techniques can be used to distinguish between possible structural isomers.

Draw one possible structure for each of the compounds.

(a)K and L are cyclic compounds with the molecular formula $C_6H_{10}O$.

Both have four peaks in their ¹³C n.m.r. spectra. K is a ketone and L is an aldehyde.

(b)Compounds M and N have the molecular formula $C_6H_{15}N$.

M is a tertiary amine with only two peaks in its 1H n.m.r. spectrum. N is a secondary amine with only three peaks in its 1H n.m.r. spectrum.

(2)

7. N.m.r. spectroscopy can be used to study the structures of organic compounds.

Compound K was studied using ¹³C n.m.r. spectroscopy.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 = 0$$

(a) Give the number of peaks in the ¹³C n.m.r. spectrum of K.

(1)

(b)Suggest a δ value of the peak for the carbon labelled b.

(1)

(c) Give the IUPAC name of K.

(1)

8. The structure of N-phenylethanamide is Use this structure to determine the number of peaks in the ¹³C n.m.r. spectrum of N-phenylethanamide.

am Sorry !!!!!

(1)

9. Describe and explain the different ways that a high resolution n.m.r. spectrum can give information about a molecule.

10. This question is about NMR spectroscopy.

A compound is usually mixed with Si(CH₃)₄ and either CCl₄ or CDCl₃ before recording the compound's 1H NMR spectrum.

State why Si(CH₃)₄, CCl₄ and CDCl₃ are used in ¹H NMR spectroscopy.

Explain how their properties make them suitable for use in ¹H NMR spectroscopy.

I am Sorry !!!!!

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK