

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY II

Level & Board	AQA (A-LEVEL)
TOPIC:	NMR SPECTROSCOPY
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	10
TOTAL MARKS	/28

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

<u>NMR Spectroscopy - 1</u>

I.

(a)

The singlet peak at $\delta = 2.20$

The three equivalent protons are from the methyl group (CH_3) attached to the carbonyl carbon (C=0).

The presence of the singlet peak at $\delta = 2.20$ ppm, integrating for 3 protons, confirms the presence of an acetyl group in compound Q

()

(b)

The singlet peak at $\delta = 3.40$ ppm, integrating for 1 proton, is due to the presence of a hydroxyl (OH) group in compound Q

(c)

Two triplet peaks show presence of $-CH_2-CH_2-$.

()

2. C <u>CHEMISTRY ONLINE</u> ()

3. (a)

A is an ester, represented as RCOOR'.

The molecular ion peak in the mass spectrum is at m/z=102, which corresponds to C4H10.

Subtracting the molecular ion peak of the ester from the molecular ion peak gives 102-44=58, equivalent to C_4H_{10} .

So, $R + R' = C_4 H_{10}$

The molecular formula of the ester can be $C_{5H_{10}O_2}$.

Possible Structure form nmr: Considering the shifts and integration:

Ethyl Propanoate (Ethyl Propionate):

CH3-CH2-COO-CH2-CH3

The structure is confirmed by the chemical shifts:

- δ 4.13 (2H): -OCH₂- (ethyl group)
- δ 2.32 (2H): -CH₂-CO- (methylene group adjacent to carbonyl)
- δ 1.33 (3H): -CH₃ (methyl group adjacent to methylene)
- δ 1.09 (3H): -CH₃ (methyl group in ethyl)

So, the molecular formula of the ester can be $C_{5H_{10}O_2}$.

(b) What is the ratio of the numbers of each type of proton?

The ratio of the numbers of each type of proton in the ester A is 2:2:3:3.

So, we can interpret this as follows:

- For the peaks at δ 4.13 and δ 2.32: The ratio is 2:2, indicating that these peaks correspond to two different types of protons, each present in equal numbers.
- For the peaks at δ 1.33 and δ 1.09:
- The ratio is 3:3, indicating that these peaks correspond to two other types of protons, each present in equal numbers but in a different ratio compared to the first two types.

I am Sorry !!!!!

(c)

The splitting patterns in the n.m.r. spectrum shows two CH₂CH₃ groups are present. ()

(d)

Following is structure of compound A, labelled with the letters a, b, c and d the four groups of equivalent protons.

CH₃COOCH₂CH₃ H

 (\mathbf{I})

(b)

5.

There are 3 types of proton which are present in the ester.

 (\mathbf{I})

Describe the splitting pattern of the ethyl group in the n.m.r. (c) spectrum of the ester.

CH₃ group:

This will appear as a triplet due to the two adjacent hydrogens on the CH_2 group (n + 1 = 2 + 1 = 3).

CH₂ group:

This will appear as a quartet due to the three adjacent hydrogens on the CH₃ group (n + 1 = 3 + 1 = 4).

Ethyl group: Triplet for the CH_3 (3 hydrogens) and quartet for the CH_2 (2 hydrogens).

7.

Structures of the three branched-chain alkenes with molecular formula C_{sH10}:

$$\begin{array}{cccccccc} H_2C = C - C H_2C H_3 & H_3C - C = C H C H_3 & H_3C - C H - C H = C H_2 \\ I \\ C H_3 & C H_3 & C H_3 & H_3C - C H - C H = C H_2 \\ \end{array}$$

Structures of the three dibromoalkanes, $C_{5}H_{10}Br_{2}$, formed when these three alkenes react with bromine:

- Integration Ratio: 6:3:1
 - 6 hydrogens from the two methyl (CH₃) groups.
 - 3 hydrogens from the CH groups adjacent to bromine atoms.
 - I hydrogen on the central carbon.
- am Sorry !!!!!
- Splitting Patterns:
 - 6 (CH₃): Single (no adjacent hydrogens).

- 3 (CH): Doublet (adjacent to the central carbon hydrogen, n + 1 = 1 + 1 = 2).
- I (CH): Quartet

(4)

8. B

9.

- ()
- Number of Peaks: 2 (if 4 peaks are allowed, splitting only)
- Integration Ratio: 6:2 or 3:1
- Splitting of Peaks:
 - Doublet (6 or 3):

Each peak representing the hydrogen protons attached to carbon atoms I and 4, which are next to one non-equivalent proton on adjacent carbons (2 and 3).

• Quartet (2 or 1):

Each peak representing the hydrogen protons attached to carbon atoms 2 and 3, which are next to three non-equivalent protons on adjacent carbons (1 and 4).

(3)

10. D

()

I am Sorry !!!!!

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK