

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY II

Level & Board	AQA (A-LEVEL)
TOPIC:	NMR SPECTROSCOPY
PAPER TYPE:	SOLUTION - 4
TOTAL QUESTIONS	10
TOTAL MARKS	/39

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

NMR Spectroscopy - 4

1. (a) H₃C-CH₂

$$H_3C - CH_2 - CH_2 - NH_2$$

- The ¹³C NMR spectrum of this isomer will have **4 peaks**.
- The splitting pattern of the peak for the hydrogens labelled 'a' in the 'H' NMR spectrum is a **triplet**, because of the two hydrogen atoms on the adjacent carbon (CH₂CH₂ group).

(b)

Structure of the isomer of $C_6H_{16}N_2$

(c)

Following are the structure of the isomer of $C_6H_{16}N_2$ that contains two tertiary amine groups and has only two peaks in its ¹³C NMR spectrum.

I am Sorry !!!!!

()

 (\mathbf{I})

(3)

Integration Ratio:

• The integration values correspond to a ratio of 2:2:3 when simplified. **Analysis of Peaks:**

Peak at 3.95 ppm:

- Integration: 2 (suggesting 2 hydrogens)
- Splitting pattern: Triplet
 - Explanation:

This indicates that these two hydrogens are adjacent to a CH₂ group. So, this peak likely corresponds to Cl-CH₂, as chlorine is electronegative and can cause a downfield shift.

Peak at 3.65 ppm:

- Integration: 2 (suggesting 2 hydrogens)
- Splitting pattern: Triplet
 - Explanation:

This indicates that these two hydrogens are adjacent to a CH₂ group. So, this peak likely corresponds to O-CH₂, as oxygen is electronegative and can cause a downfield shift.

Peak at 3.35 ppm:

- Integration: 3 (suggesting 3 hydrogens)
- Splitting pattern: Singlet

Explanation:

This indicates that these three hydrogens have no adjacent hydrogens. So, this peak likely corresponds to O-CH3, as it has no neighboring hydrogens to split its signal.

I am Sorry !!!!!

The structure of Q is $CH_3-O-CH_2-CH_2-CI$.

(5)

3. Structures of these two isomers are as:

4.

x y z CH₃CHClCOCH(CH₃)₂

The splitting patterns for the labelled hydrogens are:

Hydrogens x on CH3 : Doublet

Hydrogen y on CH : Quartet

Hydrogens z on CH₂ : Doublet

(3)

(2)

Hydrogen:

 Propenal has three different types of hydrogen nuclei (hydrogen atoms or protons) each in a unique chemical environment: The two hydrogens on the CH2 group (vinyl group). The single hydrogen on the CH group (vinyl group). The single hydrogen on the CH0 group (aldehyde group).

Three Peaks in the NMR Spectrum:

• These different environments result in three distinct peaks in the 'H' NMR spectrum.

Relative Areas Under the Peaks:

- The relative areas of these peaks correspond to the number of hydrogen atoms in each environment:
 - CH₂: 2 hydrogens.
 - CH: I hydrogen.
 - CHO: I hydrogen.

So

Hydrogen nuclei in three different environments. Relative areas under the peaks: 2:1:1

I am Sorry !!!!!

Structure for N

(2)

7. N.m.r. spectroscopy can be used to study the structures of organic compounds.

Compound K was studied using ¹³C n.m.r. spectroscopy.

(a)

, There are three number of peaks in the ¹³C n.m.r. spectrum of K.

()

(b)

 δ value of the peak is 190-220 (cm^-) for the carbon labelled b. i.e. carbonyl group.

(c)

$$CH_{3} - C_{H_{2}} - CH_{2} - C_{H_{3}} = 0$$

 $CH_{3} - C_{H_{2}} - CH_{2} - C_{H_{3}} = 0$
 $CH_{3} - C_{H_{2}} - CH_{2} - C_{H_{3}} = 0$
 $CH_{3} - C_{H_{2}} - CH_{2} - C_{H_{3}} = 0$

I am Sorry !!!!!

IUPAC name of K is hexane-2,5-dione.

(1)

There are six number of peaks in the ${}^{13}C$ n.m.r. spectrum of N-phenylethanamide.

()

9.

High-resolution nuclear magnetic resonance (NMR) spectroscopy provides valuable information about a molecule through various means:

Chemical Shift (δ) :

- The chemical shift (δ) provides information about the type of proton or chemical environment.
- For example, a shift at 1.0 ppm might indicate aliphatic protons, while a shift at 7.0 ppm might indicate aromatic protons.

Number of Peaks:

- The number of peaks corresponds to the number of different types of protons or chemical environments in the molecule.
- For instance, if there are three peaks, it suggests the presence of three distinct proton environments.

Relative Peak Areas:

- The relative areas of the peaks give the relative number of protons contributing to each type.
- For instance, a peak with twice the area of another peak indicates twice as many protons in that environment.

Splitting Patterns:

- Splitting patterns arise due to spin-spin coupling between neighboring protons.
- The number of neighboring protons is revealed by the *n*+1 rule. For example, a doublet (2 peaks) suggests one neighboring proton, a triplet (3 peaks) suggests two neighboring protons, and so on.

Deuterium Oxide $(D_2 0)$:

- Deuterium oxide (D_2O) can be used to identify hydroxyl (OH) groups in the molecule.
- The exchange of hydrogen in OH groups with deuterium in D_2O leads to disappearance of the OH peak in the spectrum.

8.

(7)

10.

Purpose of CDCl3 or CCl4 Solvent: CDCl3 or CCl4 Solvent:

- Purpose: Used as a solvent in IH NMR spectroscopy.
- Explanation:
 - **CDCl**₃: Polar covalent molecule, suitable for dissolving polar organic compounds.
 - CCl₄: Nonpolar, making it a good solvent for nonpolar organic molecules.
- Inert: Both solvents are inert, so they are unlikely to react with the sample, ensuring the integrity of the chemical analysis.

Purpose of TMS as Reference:

Tetramethylsilane (TMS) as Reference:

- **Purpose:** Used as a reference or calibration standard in 'H NMR spectroscopy.
- Explanation:
 - **Reference/Peak at 0 ppm:** TMS provides a sharp single peak at 0 ppm, serving as a reference for chemical shift measurements.
 - Equivalent Hydrogens: TMS has 12 equivalent hydrogens, resulting in one signal, simplifying the spectrum interpretation.
 - Signal Away from Others: TMS signal is far from other typical hydrogen signals, ensuring it doesn't interfere with the signals of interest.
 - Easy to Remove: TMS is volatile with a low boiling point, making it easy to remove from the sample after the NMR experiment.

(6)

I am Sorry !!!!!

Phone: +442081445350 www.chemistryonlinetuition.com ail: asherrana@chemistryonlinetuition.com

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK