

# CHEMISTRY ONLINE 

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

## CHEMISTRY

 ORGANIC CHEMISTRY IILevel \& Board

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS
10 individual/ company/organization involved in copyright abuse.

## Optical Isomerism - 3

I.
(a)

Name alcohol $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH})_{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}$
2,3-dimethylbutan - 2-ol
(b)

Name of the mechanism:
Elimination

Mechanism:

(3)
2.
(a)

C

D

Name compound C: Propyl methanoate
(b)

C

D

## Reagent:

Sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$
Observation with C (Propyl methanoate):
No reaction or effervescence will be observed.
Observation with D (Carboxylic acid):
Effervescence (bubbling) will be observed when sodium bicarbonate is added to a carboxylic acid. This is due to the release of carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ when the carboxylic acid reacts with sodium bicarbonate.

Reagent: acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Observation with C (Propyl methanoate):
Becomes green
Observation with D (Carboxylic acid):
no change
3.

The word Chirality / Chiral is used to describe optically active molecules.
4.

## Examples of Chiral Molecules:

Lactic Acid: Lactic acid is a chiral molecule. It exists in two enantiomeric forms: L-lactic acid and D-lactic acid.

2-Amino-1-propanol: This is a chiral molecule due to the presence of a chiral carbon atom bonded to four different groups.

## Lactic Acid:


L(+) Leavorotatory lactic acid

D(-) Dextrorotatory lactic acid
5.
(a)

Name of this is: alcohol 2-methylbutan-2-ol

## Graphical formula:


(b)
pent-1-ene:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
pent-2-ene:


trans pent-2-ene
(c)

Type of reaction: Dehydration / elimination
(d)

When 2,2-dimethylpropan-1-ol is heated with concentrated sulfuric acid, it does not undergo dehydration because:

No Hydrogen Atoms: There are no hydrogen atoms on the carbon atom adjacent to the $\mathrm{C}-\mathrm{OH}$ group.
Steric Hindrance: The carbon atom next to the $\mathrm{C}-\mathrm{OH}$ group is bonded to three bulky methyl groups, preventing the necessary steps for dehydration.
6.

Isomer E:

Isomer F:

7.

## Structures of Isomers

When 2-butene reacts with HBr , it forms two structural isomers:

## 2-Bromobutane



2-bromobutane

## 1-Bromobutan



1-bromobutane
Mechanism for Formation of the Major Product:

## Protonation of the Alkene:

- The double bond in 2-butene attacks a proton $\left(\mathrm{H}^{+}\right)$from HBr , leading to the formation of a carbocation intermediate.
- The more stable carbocation forms at the more substituted carbon.

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{Br}^{-}
$$

## Nucleophilic Attack:

- The bromide ion ( $\mathrm{Br}^{-}$) then attacks the carbocation, resulting in the formation of 2-bromobutane.


$$
\mathrm{CH}_{2}(\mathrm{Br})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

## Structures:

2-Bromobutane (Major Product):
Structure:


2-bromobutane
$\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
1-Bromobutane (Minor Product):
Structure:


1-bromobutane
$\mathrm{CH}_{2}(\mathrm{Br})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
8.

The racemic mixture has no effect on plane-polarized light.
This is because in a racemic mixture, there are equal amounts of both enantiomers present.
Each enantiomer rotates plane-polarized light in opposite directions, but to the same extent.

As a result, the rotations caused by the two enantiomers cancel each other out, resulting in no net rotation of plane-polarized light.

Therefore, when a racemic mixture is passed through a polarimeter, no overall rotation is observed.
9.

10.

(a)
$\mathrm{CH}_{3} \mathrm{CN}$
x

Name of compound $X$ :
ethanenitrile or methyl cyanide / cyanomethane
(1)
(b)

Type of reaction: Acid hydrolysis
(c)

Equation for the reaction taking place in Step 3:

$$
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{NH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CONHCH}_{3}+\mathrm{HCl}
$$



- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor


## CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

