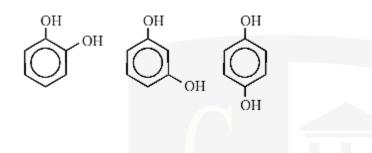


Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com


CHEMISTRY ORGANIC CHEMISTRY II

Level & Board	AQA (A-LEVEL)
TOPIC:	ORGANIC SYNTHESIS
PAPER TYPE:	SOLUTION - 2
TOTAL QUESTIONS	10
TOTAL MARKS	/23

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

<u>Organic Synthesis - 2</u>

I. (a) Isomers of C6H4(OH)2

(2)

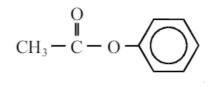
(b)

Structure of a polymer formed by CICOCH2COCI:

(2)

2. C

(1)


(2)

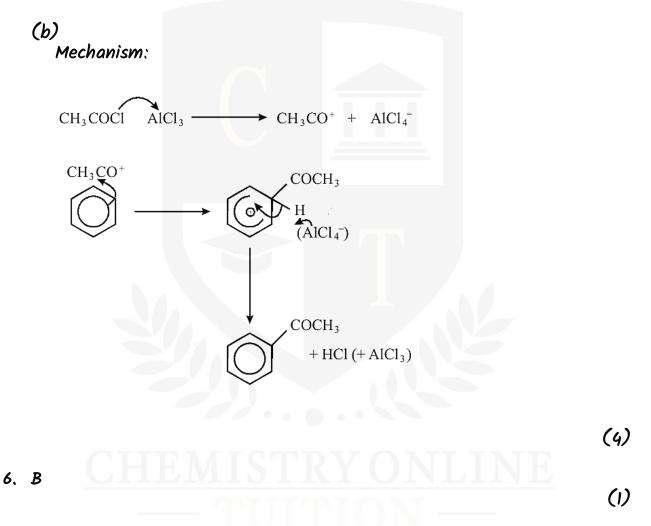
3.

Type of reaction:

Esterification / condensation

Structure of the organic product:

I am Sorry !!!!!


4. B

5.

(a)

Aluminium chloride or $AICI_3$ or iron(III) chloride or $FeCI_3$ must be present for this reaction to occur which act as catalyst this reaction.

(2)

7.

The difference in reactivity between the carbonyl group (C=0) and the alkene group (C=C) can be explained as follows:

am Sorry !!!!!

The C=O group is polar and the nucleophile attacks the δ^+ carbon, whereas C=C is non-polar and electron-rich, so the double bond/ π -bond is attacked by electrophiles.

8. D

(1)

(2)

9.

(a)

The standard enthalpy of formation of benzene, C_6H_6 is the heat energy change released when I mole of benzene is formed from its elements under standard conditions.

This can be represented by the following balanced chemical equation: $6C_{(s,graphite)}+3H_{2(g)}\rightarrow C_6H_{6(l)}$ The standard conditions are defined as 298 K (25°C) and I atm pressure.

(b)

The standard enthalpy of combustion of benzene, $C_{\delta}H_{\delta}(I)$, is the heat energy change when I mole of benzene burns in excess oxygen to form carbon dioxide and water under standard conditions.

This can be represented by the following balanced chemical equation:

 $C_{6}H_{6}(1)+7 \frac{1}{2} O_{2}(q) \rightarrow 6CO_{2}(q)+3H_{2}O(1)$

The standard conditions are defined as $298 \text{ K} (25^{\circ}\text{C})$ and I atm pressure.

(2)

 (\mathbf{I})

(2)

10. B

am Sorry !!!!!

EMISTRY ONLINE

Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonlinetuition.com

DR. ASHAR RANA

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- · Address: 210-Old Brompton Road, London SW5 OBS, UK