

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY II

Level & Board	AQA (A-LEVEL)
TOPIC:	ORGANIC SYNTHESIS
PAPER TYPE:	SOLUTION - 3
TOTAL QUESTIONS	10
TOTAL MARKS	/29

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

<u>Organic Synthesis - 3</u>

Ι.

Acidified potassium dichromate (VI), K2Cr2O7 / H2SO4

(2)

2. D

(1)

3.

The enthalpy change of hydrogenation of benzene is not -360 kJ mol^- ' due to the following reasons:

Delocalisation / π -system:

Benzene has a delocalized π -electron system due to the overlap of six p-orbitals around the ring.

Stability:

This delocalization gives extra stability to benzene, making it more stable and at a lower energy level compared to a structure with three separate π /double bonds (like cyclohexatriene, the Kekule structure).

So, more energy is needed to break the bonds in benzene, resulting in a less exothermic hydrogenation reaction.

(3)

I am Sorry !!!!!

4. C

(1)

5. Al2O3 (vapours passed over it) Acid-catalysed elimination by H3PO4

am Sorry !!!!!

(3)


```
Structure of Compound S:
```

Compound S is 3-pentanenitrile $(CH_3 CH(CN)CH_2 CH_3)$.

Reagent and Condition for Step 3:

Reagent: Potassium cyanide (KCN)

Condition: Alcoholic (or ethanolic)

Reagent and Condition for Step 4:

Reagent:

Hydrogen (H_2) or Lithium aluminium hydride $(LiAlH_4)$ or Sodium (Na)

Condition:

Nickel (Ni) or Platinum (Pt) or Palladium (Pd) catalyst, or ether (ethoxyethane) for LiAlH₄, or ethanol for Na

I am Sorry !!!!!

8.

(a) Formula of a catalyst for the reaction: AlBr₃ / FeBr₃ / AlCl₃

(1)

(b) Species that reacts with benzene molecule:

 $AlBr_{3} + CH_{3}CH_{2}Br \rightarrow CH_{3}CH_{2}^{+} + AlBr_{4}^{-}$ $CH_{2}CH_{3} \rightarrow O$ $CH_{2}CH_{3} \rightarrow O$ $CH_{2}CH_{3} + HBr + AlBr_{3}$ $CH_{2}CH_{3} + HBr + AlBr_{3}$

(4)

(c)

Name of the type of mechanism:

Electrophilic substitution

9.

I am Sorry !!!!!

Reagent:

2-chloropropane (also known as isopropyl chloride, $ClCH(CH_3)_2$) 1-chloropropane ($ClCH_2 CH_2 CH_3$)

(1)

Catalyst: Aluminum chloride (AlCl ₃) Iron(III) chloride (FeCl ₃)	
So, Reagent: 2-chloropropane (ClCH(CH ₃) ₂) Catalyst: Aluminum chloride (AlCl ₃)	
(b) Name of the type of reaction and its mechanism:	(2)
Electrophilic substitution	(2)
B	(1)

I am Sorry !!!!!

10.

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK