
 CHEMISTRY ONLINE
 - TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY
 PHYSICAL CHEMISTRY II

Level \& Board AQA (A-LEVEL)

TOPIC:
ACIDS AND BASES

PAPER TYPE:
QUESTION PAPER - 2

Acids and Bases - 2

1. Propanoic acid $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)$ is a weak acid.

The acid dissociation constant (Ka) for propanoic acid is $1.35 \times 10^{-5} \mathrm{~mol}$ dm^{-3} at $25^{\circ} \mathrm{C}$
(a)State the meaning of the term weak acid.
(b)Give an expression for the acid dissociation constant for propanoic acid.
(c) A student dilutes $25.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid by adding water until the total volume is $100.0 \mathrm{~cm}^{3}$

Calculate the pH of this diluted solution of propanoic acid. Give your answer to 2 decimal places.
(d)A buffer solution with a pH of 4.50 is made by dissolving $\times \mathrm{g}$ of sodium propanoate $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}\right)$ in a solution of propanoic acid.

The final volume of buffer solution is $500 \mathrm{~cm}^{3}$ and the final concentration of the propanoic acid is $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ Calculate x in g For propanoic acid, $\mathrm{Ka}=1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
2. The table shows the pKa values for two acids.

Name of acid	pKa
Propanoic acid	4.87
Butanoic acid	4.82

Which statement is correct?
A. Propanoic acid is a stronger acid than butanoic acid.
B. The value of Ka for propanoic acid is greater than that for butanoic acid.
C. The value of Ka for propanoic acid is $1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
D. The value of Ka for butanoic acid is $6.61 \times 10^{4} \mathrm{~mol} \mathrm{dm} .^{-3}$
3. A mixture of methanoic acid and sodium methanoate in aqueous solution acts as an acidic buffer solution.

The equation shows the dissociation of methanoic acid.
$\mathrm{HCOOH}(\mathrm{aq}) \rightleftharpoons \mathrm{HCOO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
Calculate the mass, in g , of sodium methanoate (HCOONa) that must be added to $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ methanoic acid to produce a buffer solution with
$\mathrm{pH}=4.05$ at 298 K
For methanoic acid, $\mathrm{pKa}=3.75$ at 298 K
4. The diagram shows a pH curve produced by adding a strong alkali to a weak acid.

Which point on the curve represents a solution that can act as a buffer?
A. A
B. B
C. C
D. D
5. This question is about sulfuric acid and its salts.
(a)Draw the displayed formula of a molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b)In aqueous solution, sulfuric acid acts as a strong acid.

The $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates to form $\mathrm{HSO}_{4}{ }^{-}$ions and H^{+}ions.

The $\mathrm{HSO}_{4}{ }^{-}$ions act as a weak acid and dissociate to form $\mathrm{SO}_{4}{ }^{2-}$ ions and H^{+}ions.

Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution.

Include appropriate arrows in your equations.
(c)A student is required to make $250 \mathrm{~cm}^{3}$ of an aqueous solution that contains an accurately measured mass of sodium hydrogensulfate (NaHSO_{4}).

Describe the method that the student should use to make this solution.
(d)A solution that contains 605 mg of NaHSO_{4} in $100 \mathrm{~cm}^{3}$ of solution has a pH of 1.72

Calculate the value of Ka for the hydrogensulfate ion $\left(\mathrm{HSO}_{4}^{-}\right)$that is behaving as a weak acid.

Give your answer to three significant figures.
State the units of Ka
(e)Some sodium sulfate is dissolved in a sample of the solution from part (d).

Explain why this increases the pH of the solution.
6. A solution of sodium ethanoate has a pH of 8.91 at $25^{\circ} \mathrm{C}$.

The hydrogen ion and hydroxide ion concentrations in this solution are
A. $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
B. $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=8.13 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
C. $\left[\mathrm{H}^{+}\right]=1.23 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
D. $\left[\mathrm{H}^{+}\right]=1.23 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{OH}^{-}\right]=8.13 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
(1)
7. In this question, give all pH values to 2 decimal places.
(a)Write expressions for the ionic product of water, Kw , and for pH .
(b)At 318 K , the value of Kw is $4.02 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ and hence the pH of pure water is 6.70 State why pure water is not acidic at 318 K .
(c)Calculate the number of moles of sodium hydroxide in $2.00 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide.
(d)Use the value of Kw given above and your answer to calculate the pH of the solution formed when $2.00 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide are added to $998 \mathrm{~cm}^{3}$ of pure water at 318 K .
8. Which is the concentration of $\mathrm{NaOH}(\mathrm{aq})$, in $\mathrm{mol} \mathrm{dm}^{-3}$, that has $\mathrm{pH}=$ 14.30 ?
$\mathrm{Kw}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{\circ} \mathrm{C}$
A. -1.16
B. 5.01×10^{-15}
C. 2.00×10^{14}
D. 2.00
9. A sample of the $0.220 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ethanoic acid was titrated against sodium hydroxide solution.
(a) Calculate the volume of a $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide required to neutralise $25.0 \mathrm{~cm}^{3}$ of the ethanoic acid solution.
(2)
(b) From the list below, select the best indicator for this titration and explain your choice.

Name of indicator pH range

Bromophenol blue	$3.0-4.6$
Methyl red	$4.2-6.3$
Bromothymol blue	$6.0-7.6$
Thymol blue	$8.0-9.6$

10. Addition of which one of the following to $10 \mathrm{~cm}^{3}$ of 1.0 M NaOH would result in the pH being halved?
A. $10 \mathrm{~cm}^{3}$ of water
B. $100 \mathrm{~cm}^{3}$ of water
C. $5 \mathrm{~cm}^{3}$ of 1.0 M HCl
D. $10 \mathrm{~cm}^{3}$ of 1.0 M HCl

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

. UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

