

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY PHYSICAL CHEMISTRY II

Level \& Board
AQA (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

Rate Equations - 1

1. The rate of the reaction between substance A and substance B was studied in a series of experiments carried out at the same temperature.

In each experiment the initial rate was measured using different concentrations of A and B.

These results were used to deduce the order of reaction with respect to A and the order of reaction with respect to B.
(a)What is meant by the term order of reaction with respect to A ?
(b)When the concentrations of A and B were both doubled, the initial rate increased by a factor of 4 .
Deduce the overall order of the reaction.
(c)In another experiment, the concentration of A was increased by a factor of three and the concentration of B was halved.

This caused the initial rate to increase by a factor of nine.
Deduce the order of reaction with respect to A and the order with respect to B.

Write a rate equation for the reaction and suggest suitable units for the rate constant.
2. The rate expression for the reaction between X and Y is rate $=k[X]^{2}[Y]$ Which statement is correct?
A. The rate constant has units $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
B. The rate of the reaction is halved if the concentration of X is halved and the concentration of Y is doubled.
C. The rate increases by a factor of 16 if the concentration of X is tripled and the concentration of Y is doubled.
D. The rate constant is independent of temperature.
3. The following data were obtained in a series of experiments on the rate of the reaction between NO and O_{2} at a constant temperature.

Experiment	Initial concentration of NO/mol dm		
1	5.0×10^{-2}	Initial concentration of $\mathrm{O}_{2} / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol}$ $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$
2	6.5×10^{-2}	3.0×10^{-2}	6.5×10^{-4}
		To calculated	

The rate equation for this reaction is rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
(a) Use the data from experiment 1 to calculate a value for the rate constant, k , at this temperature, and state its units.
(2)
(b)Calculate a value for the initial rate in experiment 2.
4. What are the units of the rate constant for a third order reaction?
A. $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
B. $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
C. $\mathrm{mol}^{2} \mathrm{dm}^{-6} \mathrm{~s}^{-1}$
D. $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
5. Compound A reacts with compound B as shown by the overall equation
$A+3 B \rightarrow A B_{3}$
The rate equation for the reaction is rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
A suggested mechanism for the reaction is
Step $1 A+B \rightarrow A B$
Step $2 A B+B \rightarrow A B_{2}$
Step $3 \mathrm{AB} 2+\mathrm{B} \rightarrow \mathrm{AB}_{3}$
Deduce which one of the three steps is the rate-determining step. Explain your answer.
6. The results of an investigation of the reaction between P and Q are shown in this table

Experiment	$[\mathrm{P}] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial Initial [Q]/ $\mathrm{mol} \mathrm{dm}^{-3}$	Initial rate / $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.200	0.500	0.400
2	0.600	To be calculated	0.800

The rate equation is: rate $=\mathrm{k}[\mathrm{P}][\mathrm{Q}]^{2}$
What is the initial concentration of Q in experiment 2 ?
A. 0.167
B. 0.333
C. 0.408
D. 0.612
7. In the presence of the catalyst rhodium, the reaction between NO and H_{2} occurs according to the following equation.
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The kinetics of the reaction were investigated and the rate equation was found to be rate $=\mathrm{k}[\mathrm{NO}]_{2}\left[\mathrm{H}_{2}\right]$

The initial rate of reaction was $6.2 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
When the initial concentration of NO was $2.9 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and the initial concentration of H_{2} was $2.3 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.
(a)Calculate the value of the rate constant under these conditions and give its units.
(3)
(b)Calculate the initial rate of reaction if the experiment is repeated under the same conditions but with the concentrations of NO and of H_{2} both doubled from their original values.
8. Solutions of two compounds, W and X , react together in the presence of a soluble catalyst, Y , as shown in the equation $2 \mathrm{~W}+\mathrm{X} \rightarrow \mathrm{Z}$

When the concentrations of W, X and Y are all doubled, the rate of reaction increases by a factor of four.

Which is a possible rate equation for this reaction?
A. rate $=k[W]^{2}[\mathrm{X}]$
B. rate $=k[\mathrm{~W}]^{2}[\mathrm{Y}]$
C. rate $=k[\mathrm{X}][\mathrm{Y}]$
D. rate $=k[X][Z]$
9. Using the rate equation and the overall equation, the following three-step mechanism for the reaction was suggested.

X and Y are intermediate species.
Step $1 \mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{X}$
Step $2 X+H_{2} \rightarrow Y$
Step $3 \mathrm{Y}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Suggest which one of the three steps is the rate-determining step.
Explain your answer.
10. The rate equation for the acid-catalysed reaction between iodine and propanone is:
rate $=\mathrm{k}\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]$
The rate of reaction was measured for a mixture of iodine, propanone and sulfuric acid at $\mathrm{pH}=0.70$

In a second mixture the concentration of the sulfuric acid was different but the concentrations of iodine and propanone were unchanged.

The new rate of reaction was a quarter of the original rate. What was the pH of the second mixture?
A. 1.00
B. 1.30
C. 1.40
D. 2.80

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

