

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY PHYSICAL CHEMISTRY

Level & Board	AQA (A-LEVEL)
TOPIC:	AMOUNT OF SUBSTANCE
PAPER TYPE:	QUESTION PAPER - 3
TOTAL QUESTIONS	10
TOTAL MARKS	/43

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Amount of Substance - 3

1. This question is about a toxic chloroalkane, X, that has a boiling point of 40 °C.

A student carried out an experiment to determine the Mr of X by injecting a sample of X from a hypodermic syringe into a gas syringe in an oven at 97 °C and 100 kPa.

The student's results are set out in Table 1 and Table 2.

Table 1

Mass of hypodermic syringe filled with X before injection / g	10.340
Mass of hypodermic syringe with left over X after injection / g	10.070
Mass of X injected / g	

Table 2

Volume reading on gas syringe before injection of X / cm ³	
Volume of X in gas syringe after injection of X / cm ³	105.0
Volume of X / cm ³	

(a) Complete Table 1 and Table 2 by calculating the mass and volume of X.

(1)

(b)X is known to be one of the following chloroalkanes:

- CCI₄
- CHCl₃
- CH₂Cl₂
- CH₃CI

Justify this statement by calculating a value for the Mr of X and use your answer to suggest the most likely identity of X from this list.

Give your answer for the Mr of X to an appropriate precision.

(The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

Identity of X (If you have been unable to calculate a value for Mr, you may assume that the Mr value is 52. This is not the correct value).

(c) Suggest a reason, other than apparatus inaccuracy, why the Mr value determined from the experimental results differs from the actual Mr.

am Sorry !!!!

(5)

(d)Suggest, with a reason, an appropriate safety precaution that the student should take when using the toxic chloroalkane, X, in the experiment.

(2)

- 2. What is the volume of 0.200 mol dm⁻³ Ba(OH)₂ (aq) required to neutralise exactly 30.0 cm³ of 0.100 mol dm⁻³ HCl(aq)?
 - **A.** 150.0 cm³
 - **B.** 75.0 cm³
 - **C.** 15.0 cm³
 - **D.** 7.50 cm^3

(1)

3. Nickel makes up 25% of the total mass of a fifty pence coin.

A fifty pence coin has mass of 8.0 g.

(a) Calculate how many moles of nickel atoms are in a fifty pence coin.

(2)

(b) Calculate the number of atoms of nickel in a fifty pence coin.

 $L = 6.02 \times 10^{23} \text{ mol}^{-1}$

(1)

4. The maximum errors for the pipette and the burette are shown below. These errors take into account multiple measurements.

Pipette ± 0.05 cm³ Burette ± 0.15 cm³

Estimate the maximum percentage error in using each of these pieces of apparatus.

Use an average titre 24.25 cm³ to calculate the percentage error in using the burette.

(2)

5. PBr₃ can be prepared by heating bromine with phosphorus, P₄.

Write a balanced equation for this reaction.

(1)

- 6. Copper can be produced from rock that contains CuFeS₂
 - (a) Balance the equations for the two stages in this process.

.....CuFeS
$$_2$$
 +O2 +SiO $_2$ \rightarrow Cu $_2$ S +Cu $_2$ O +SO $_2$ +FeSiO $_3$

.....
$$Cu_2S +Cu_2O \rightarrowCu +SO_2$$
 (2)

(b)Suggest two reasons why the sulfur dioxide by-product of this process is removed from the exhaust gases.

(2)

(c)A passenger jet contains 4050 kg of copper wiring. A rock sample contains 1.25% CuFeS₂ by mass.

Calculate the mass, in tonnes, of rock needed to produce enough copper wire for a passenger jet.

$$(1 tonne = 1000 kg)$$

(4)

(d)Copper can also be produced by the reaction of carbon with copper(II) oxide according to the equation

$$2CuO + C \rightarrow 2Cu + CO_2$$

Calculate the percentage atom economy for the production of copper by this process.

Give your answer to the appropriate number of significant figures.

7. A 20.0 cm³ sample of a 0.400 mol dm⁻³ aqueous solution of a metal bromide (MBr_n) reacts exactly with 160 cm³ of 0.100 mol dm⁻³ aqueous silver nitrate.

What is the formula of the metal bromide?

- A. MBr
- B. MBr₂
- C. MBr₃
- D. MBr₄
- **8.** An experiment was carried out to determine the relative molecular mass (Mr) of a volatile hydrocarbon X that is a liquid at room temperature.

A known mass of X was vaporised at a known temperature and pressure and the volume of the gas produced was measured in a gas syringe.

Data from this experiment are shown in the table.

Mass of X	194 mg
Temperature	373 K
Pressure	102 kPa
Volume	72 cm ³

(a) Calculate the relative molecular mass of X.

Show your working.

Give your answer to the appropriate number of significant figures. The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

(b)Analysis of a different hydrocarbon Y shows that it contains 83.7% by mass of carbon.

Calculate the empirical formula of Y.

Use this empirical formula and the relative molecular mass of Y (Mr = 86.0) to calculate the molecular formula of Y.

9. Ethanedioic acid $(H_2C_2O_4)$ is a diprotic acid.

Beekeepers use a solution of this acid as a pesticide.

A student carried out a titration with sodium hydroxide solution to determine the mass of the acid in the solution.

The student repeated the titration until concordant titres were obtained.

$$H_2C_2O_4(aq) + 2NaOH(aq) \rightarrow Na_2C_2O_4(aq) + 2H_2O(I)$$

(a) The student found that 25.0 cm³ of the ethanedioic acid solution reacted completely with 25.30 cm³ of 0.500 mol dm⁻³ sodium hydroxide solution.

Calculate the mass, in mg, of the acid in 25.0 cm³ of this solution.

(b)The student used a wash bottle containing deionised water when approaching the end-point to rinse the inside of the conical flask.

Explain why this improved the accuracy of the titration.

(1)

(c) Give the meaning of the term concordant titres.

(1)

- 10. Which of these contains the greatest number of atoms?

 - A. 127 mg of iodine
 B. 1.54 x 10⁻⁴ kg of phosphorus
 C. 81.0 mg of carbon dioxide
 D. 1.70 x 10⁻⁴ kg of ammonia

(1)

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- · Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- · International Phone/WhatsApp: 00442081445350
- · Website: www.chemistryonlinetuition.com
- $\cdot \ {\sf Email: asherrana@chemistryonlinetuition.com}$
- · Address: 210-Old Brompton Road, London SW5 OBS, UK