

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY PHYSICAL CHEMISTRY

Level & Board	AQA (A-LEVEL)
TOPIC:	AMOUNT OF SUBSTANCE
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	10
TOTAL MARKS	/42

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Amount of Substance - I

1. С

 (\mathbf{I})

2.

(a) The masses of the elements in this sample are:

- Sodium (Na): 21.6 g
- Chlorine (Cl): 33.3 g Oxygen (O): 45.1 g

Convert the masses to moles:

- Moles of Na: 21.6g / 22.99 g/mol=0.939 mol Moles of Cl: 33.3g / 35.45 g/mol=0.94 mol Moles of O: 45.1 g / 16.00 g/mol=2.82 mol

Determine the mole ratio of the elements:

- Ratio of Na: 0.939 / 0.939 = 1
- Ratio of Cl: 0.94 / 0.939 = 1
- Ratio of 0: 2.82 / 0.939 = 3

Write the empirical formula:

The simplest whole number ratio of Na : Cl : O is 1 : 1 : 3.

So, the empirical formula of sodium chlorate(V) is $NaClO_3$.

(3)

(b)

Balanced equation:

 $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$

 (\mathbf{r})

3.

(a)

Determine the mass of water lost:

Mass of water=Initial mass of hydrated salt–Mass of anhydrous salt

Mass of water=2.287 g - 1.344 g = 0.943 g

Calculate the moles of anhydrous NiSO4:

Molar mass of NiSO4:

Ni=58.69 g/mol, S=32.07 g/mol, O × 4 =4×16.00 g/mol=64.00 g/mol

Molar mass of NiSO₄=58.69+32.07+64.00 =154.76 g/mol

Moles of NiSO4:

Moles of NiSO4 = 1.344 g / 154.76 g/mol=0.008684 mol

Calculate the moles of water:

Molar mass of $H_2O = 18.02 \text{ g/mol}$

Moles of water:

Moles of water=0.943 g / 18.02 g/mol =0.05232 mol

Determine the value of x:

x=Moles of water / Moles of NiSO4

=0.05232 mol / 0.008684 mol=6.02

The value of x in $NiSO_4 \cdot 6H_2O$

(b)

Heat to constant mass

Reheat the sample.

Check that the mass is unchanged after reheating and cooling until the mass remains constant.

(4)

Or

Infrared Spectroscopy (IR)

Record an IR spectrum.

Check for the absence of a peak between 3230 and 3550 cm⁻¹, indicating no water is present.

4. B

()

(2)

5.

(a) Equation for the reaction between iron and dilute sulfuric acid:

 $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$

(1)

(b)

Chemical Hazard:

Sulfuric acid is corrosive. Hydrogen gas is flammable/explosive.

Safety Precaution:

For sulfuric acid: Wear gloves and eye protection to prevent skin and eye contact. For hydrogen gas: Avoid naked flames or sparks to prevent ignition and potential explosions.

(2)

6. B

()

7. (a)

Mass of water lost:

Mass of water lost=4.38 g - 2.46 g = 1.92 g

Moles of anhydrous zinc sulfate:

Molar mass of ZnSO4=161.45g

Moles of $2nSO_4 = 2.46 g / 161.45 g/mol = 0.01523 mol$

Moles of water: Molar mass of H₂0=18.02 g/mol Moles of H₂0=1.92 g / 18.02 g/mol=0.1065 mol

Value of x: x=0.1065 mol / 0.01523 mol = 7 so, x is 7, so the formula is 2nSO₄·7H₂O

(b)

Moles of $HCl = 1.20 mol/dm^3 \times 0.100 dm^3 = 0.120 mol$

Moles of ZnO=0.0830 mol

Required moles of HCl=0.0830 mol×2=0.166 mol

As we have only 0.120 mol of HCl, HCl is the limiting reagent.

Moles of ZnCl₂=0.120 mol / 2 =0.060 mol

Molar mass of ZnCl2=65.4+2×35.5=136.4 g/mol

Mass of ZnCl₂=0.060 mol×136.4 g/mol=8.18 g

(4)

(3)

(c) Calculate moles of ZnCl₂

I am Sorry !!!!!

Moles of ZnCl2=10.7 g / 136.4 g/mol=0.0784 mol

Determine moles of zinc reacting:

As I mole of Zn produces I mole of ZnCl₂:

Moles of Zn=0.0784 mol

Calculate the mass of zinc reacting:

Mass of Zn=0.0784 mol×65.4 g/mol=5.13 g

Calculate the percentage purity:

Percentage purity=(5.13g / 5.68g)×100=(5.685.13)×100

=90.3%

(4)

(d)

Ionic

Solid zinc fluoride (ZnF_2) forms an ionic crystal structure.

Reason for High Melting Point

The high melting point of zinc fluoride is due to:

Strong Electrostatic Attraction

There is a strong electrostatic attraction between the oppositely charged ions, specifically between the Zn²⁺ ions and the F⁻ ions.

This strong ionic bonding results in a high melting point for zinc fluoride, as a significant amount of energy is required to overcome these forces and break the crystal lattice.

(3)

am Sorry !!!!**8.**

(a) Calculate moles of Cr2072-per titration:

 $_{\circ}$ Volume of K₂Cr₂O₇ solution used = 21.3 cm³

- \circ Concentration of K₂Cr₂O₇ solution = 0.0150 mol/dm³
- Moles of $Cr_2O_7^{2-}$ used = concentration × volume
- Moles of $Cr_2O_7^{2-} = (21.3 \times 0.0150)/1000 = 3.195 \times 10^{-4} \text{ mol}$

Calculate moles of Fe²⁺:

• According to the balanced equation

$$Cr_2O_7^{2-}+14H^++6Fe^{2+}\rightarrow 2Cr^{3+}+7H_2O+6Fe^{3+}$$

the ratio of $Cr_2O_7^{2-}$ to Fe^{2+} is 1:6.

- Moles of Fe^{2+} reacted:
- Moles of Fe²⁺=6×3.195×10⁻⁴=1.917×10⁻³ mol

Calculate original moles of Fe²⁺ in 250 cm³ solution:

- The solution was diluted to 200 cm³ after titration, but initially, it was 250 cm³.
- Moles of Fe²⁺ in 250 cm³:
- Moles of $Fe^{2+} = \frac{1.917 \times 10^{-3} \times 10}{250/1000} = 1.917 \times 10^{-2} \text{ mol}$

Calculate mass of FeSO4.7H20

Molar mass of $FeSO_4 \cdot 7H_2O = 278.9 \text{ g/mol}$

- Mass of FeSO4.7H20
- Mass=Moles×Molar mass=1.917×10⁻²×278.9=5.33g

So, the mass of $FeSO_4 \cdot 7H_2O$ obtained is 5.33 g,

(b)

Impurity:

Reducing Agent or Partially Hydrated Compound

Reducing Agent:

• An impurity that is a reducing agent would react with the dichromate $(Cr_2O_7^{2-})$ during titration.

(*s***)**

• This causes the impurity to react with more dichromate than the same mass of FeSO4.7H2O, leading to an overestimation of the moles of Fe²⁺.

Partially Hydrated Compound:

- An impurity that is a version of FeSO4 with fewer than 7 waters of hydration has a higher concentration of Fe²⁺ per unit mass.
- For equal masses, this impurity reacts with more dichromate than FeSO₄, resulting in an overestimated calculation of the FeSO₄·7H₂O mass.

So, the impurity makes the calculated mass of FeSO₄.7H₂O appear greater than the actual mass.

9. C

()

(2)

10.

Molar mass of BaO: BaO=153g/mol

Determine the moles of BaO in 500 g: 500 g / 153 g/mol = 3.268 mol = 3.268 mol

Use the stoichiometry from the balanced equation

 $(6Ba0 + 2AI \rightarrow 3Ba + Ba_3Al_2O_6)$:

6 mol Ba0→3 mol Ba⇒1 mol Ba0→1/2 mol Ba

Moles of Ba=(3.268 mol Ba0) / 2 =1.634 mol Ba

moles of Ba to grams:

1.634 mol Ba×137 g/mol=223.86 g Ba

I am Sorry !!!!!

(4)

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK