

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY

PHYSICAL CHEMISTRY

Level \& Board
AQA (A-LEVEL)

TOPIC:

PAPER TYPE:

Amount of Substance - 2

1.

Given:

- Amount of $\mathrm{CaS}=2.50 \mathrm{~g}$
- Amount of $\mathrm{CaSO}_{4}=9.85 \mathrm{~g}$
- Molar masses:
- Molar mass of Cas (CaS) $=72.2 \mathrm{~g} / \mathrm{mol}$
- Molar mass of $\mathrm{CaSO}_{4}\left(\mathrm{CaSO}_{4}\right)=136.2 \mathrm{~g} / \mathrm{mol}$

Calculate moles of CaS and CaSO_{4}

Moles of Cas:
Moles of CaS $=2.50 \mathrm{~g} / 72.2 \mathrm{~g} / \mathrm{mol}=0.0346 \mathrm{~mol}$
Moles of CaSO_{4} :
Moles of $\mathrm{CaSO}_{4}=9.85 \mathrm{~g} / 136.2 \mathrm{~g} / \mathrm{mol}=0.0723 \mathrm{~mol}$

Determine the limiting reagent

According to the balanced equation:
$\mathrm{CaS}+3 \mathrm{CaSO}_{4} \rightarrow 4 \mathrm{CaO}+4 \mathrm{SO}_{2}$
So 1 mole of Cas requires 3 moles of CaSO_{4}.
Moles of CaSO_{4} required for CaS:
$0.0346 \mathrm{~mol} \mathrm{CaS}^{2} 3=0.1038 \mathrm{~mol} \mathrm{CaSO}_{4}$
Since we only have 0.0723 mol of CaSO_{4}, it is the limiting reagent.
Calculate moles of SO_{2} formed
From the limiting reagent $\left(\mathrm{CaSO}_{4}\right)$, calculate moles of SO_{2} produced:
Moles of $\mathrm{SO}_{2}=\left(0.0723 \mathrm{~mol} \mathrm{CaSO}_{4}\right) \times 4 \mathrm{~mol} \mathrm{SO}_{2} / 3 \mathrm{~mol} \mathrm{CaSO}_{4}$ $=0.0964 \mathrm{~mol} \mathrm{SO}_{2}$

Calculate mass of SO_{2} formed

Mass of $\mathrm{SO}_{2}=0.0964 \mathrm{~mol} \times 64.1 \mathrm{~g} / \mathrm{mol}=6.18 \mathrm{~g}$
So, the mass of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ formed in the reaction is 6.18 g .
2. C
3.

(a)

Given titration results:
Rough: $20.85 \mathrm{~cm}^{3}$
Titration 1: $20.25 \mathrm{~cm}^{3}$
Titration 2: $20.50 \mathrm{~cm}^{3}$
Titration 3: $20.30 \mathrm{~cm}^{3}$
Mean titre value:
Mean titre $=(20.25+20.50+20.30) / 3$
$=61.05 / 3$
$=20.35 \mathrm{~cm}^{3}$

Calculate moles of NaOH :

Moles of $\mathrm{NaOH}=0.350 \mathrm{~mol} / \mathrm{dm}^{3} \times\left(20.35 \mathrm{~cm}^{3} / 1000 \mathrm{~cm}^{3} / \mathrm{dm}^{3}\right)$
Moles of $\mathrm{NaOH}=0.350 \times 0.02035=0.0071225 \mathrm{~mol}$
Moles of ethanoic acid in $25 \mathrm{~cm}^{3}$:
Moles of $\mathrm{CH}_{3} \mathrm{COOH}=$ Moles of $\mathrm{NaOH}=0.0071225 \mathrm{~mol}$
Moles of ethanoic acid in $200 \mathrm{~cm}^{3}$:
Moles of $\mathrm{CH}_{3} \mathrm{COOH}$ in $200 \mathrm{~cm}^{3}=0.0071225 \mathrm{~mol} \times 8=0.05698 \mathrm{~mol}$
Mass of $\mathrm{CH}_{3} \mathrm{COOH}=0.05698 \mathrm{~mol} \times 60.05 \mathrm{~g} / \mathrm{mol}=3.420 \mathrm{~g}$
Mass of $\mathrm{CH} 3 \mathrm{COONa}=5.60-3.419=2.181 \mathrm{~g}$
Percentage by mass of $\mathrm{CH}_{3} \mathrm{COONa}=(5.60 / 2.181) \times 100=38.95 \%$

(b)

Effect of Rinsing Burette with Deionised Water

The titre value would increase. Because the sodium hydroxide solution would be more dilute.
4. B
5. This question is about two experiments on gases.
(a)

Pressure:
$51.0 \mathrm{kPa}=51,000 \mathrm{~Pa}$
Volume:
$482 \mathrm{~cm}^{3}=0.000482 \mathrm{~m}^{3}$

Calculate moles (n):

$$
\begin{gathered}
n=\frac{\mathrm{PV}}{\mathrm{RT}} \\
n=\frac{51,000 \times 0.000482}{8.31 \times 297}
\end{gathered}
$$

$n=0.00995 \mathrm{~mol}$
Mass of $Y=0.717 \mathrm{~g}$
Mr=mass / moles $=0.717 / 0.00995=72.06$

Given:

Moles of O_{2} used: 0.0075 mol (As half of 0.02000 .02000 .0200 mol of O_{2} was used)
Moles of CO_{2} produced: 0.0080 mol
Calculation:
Total moles of gas in the flask:
Total moles $=$ Moles of $\mathrm{O}_{2}+$ Moles of CO_{2}
Total moles $=0.0075 \mathrm{~mol}+0.0080 \mathrm{~mol}$
$=0.0155 \mathrm{~mol}$
6. C
7.
(a)

Given data:

- Pressure of gas $(P)=100 \mathrm{kPa}=100,000 \mathrm{~Pa}$
- Volume of gas $(V)=178.0 \mathrm{~cm}^{3}=0.178 \mathrm{~L}=0.178 \times 10^{-3} \mathrm{~m}^{3}$
- Temperature $(T)=120^{\circ} \mathrm{C}=120+273.15=393.15 \mathrm{~K}$
- Mass of liquid A injected $=0.460 \mathrm{~g}$ Gas constant $(R)=8.31 \mathrm{JK}^{-} \mathrm{mol}^{-}{ }^{\prime}$

Volume to cubic meters (m^{3}):
$V=0.178 \mathrm{~L}=0.178 \times 10^{-3} \mathrm{~m}^{3}$
Calculate the number of moles of gas (n) using the ideal gas law:

$$
\begin{gathered}
n=\frac{\mathrm{PV}}{\mathrm{RT}} \\
n=\frac{100,000 \times 0.178 \times 10^{-3}}{8.31 \times 393.15} \\
=0.00545 \mathrm{~mol}
\end{gathered}
$$

Molecular mass (Mr) of liquid A:

```
Mr=Mass of liquid A / Number of moles of gas
Mass of liquid \(A=0.460 \mathrm{~g}=0.460 \times 10^{-3} \mathrm{~kg}\)
\(\mathrm{Mr}=0.460 \times 10^{-3} \mathrm{~kg} / 0.00545 \mathrm{~mol}\)
\(M r=84.40\)
```

(b)

When some of the liquid injected into the gas syringe does not vaporize completely:

Effect on Mr Calculation:

The calculated Mr will be higher than the actual Mr of the volatile liquid A. This is because the moles of gas used in the calculation (denominator in $M r=$ mass $/$ moles) are underestimated. The presence of non-vaporized liquid means the measured mass includes both vaporized and nonvaporized components, but only the vaporized portion contributes to the moles of gas.

Systematic Error:

The presence of non-vaporized liquid introduces a systematic error where the calculated Mr is inflated.
This error arises because the calculation assumes complete vaporization, but in reality, some liquid remains unvaporized, skewing the relationship between measured mass and moles of gas.

Experimental Precision:

To ensure accurate Mr determination, it's crucial that all injected liquid vaporizes completely.

Any residual liquid not vaporized compromises the accuracy of the experiment, leading to an overestimated Mr due to fewer moles of gas being accounted for in the calculation.
(c)

Total uncertainty $=2 \times 0.001 \mathrm{~g}=0.002 \mathrm{~g}$
Percentage uncertainty $=(0.002 \mathrm{~g} / 0.460 \mathrm{~g}) \times 100 \%$
$=0.435 \%$
8. C
9.

Given:

- Yield of methylpropanal $=552 \mathrm{mg}=0.552 \mathrm{~g}$
- Organic starting material used $=1.00 \mathrm{~g}$
- Molar mass of methylpropanal $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)=72 \mathrm{~g} / \mathrm{mol}$

Moles of reactant:
Moles of reactant $=1.00 / 116=0.00862 \mathrm{~mol}$
Calculate moles of product (methylpropanal):
Moles of methylpropanal $=0.552 \mathrm{~g} / 72 \mathrm{~g} / \mathrm{mol}=0.00767 \mathrm{~mol}$
Theoretical yield $=0.00862 \mathrm{~mol} \times 72 \mathrm{~g} / \mathrm{mol}=0.62064 \mathrm{~g}$
Percentage yield $=(0.552 \mathrm{~g} / 0.62064 \mathrm{~g}) \times 100 \%=88.9 \%$

Calculate the percentage atom economy:

Percentage atom economy $=(72 \mathrm{~g} / \mathrm{moll} 08 \mathrm{~g} / \mathrm{mol}) \times 100 \%=66.7 \%$

Percentage Yield:

Ensures efficient conversion of reactants into products, maximizing product output.

Percentage Atom Economy:

Ensures most of the reactant mass ends up in the desired product, minimizing waste and by-products.

10. B

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

