

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY

PHYSICAL CHEMISTRY

Level \& Board	AQA (A-LEVEL)
TOPIC:	AMOUNT OF SUBSTANCE
PAPER TYPE:	
SOLUTION - 4	
TOTAL QUESTIONS	10
TOTAL MARKS	$/ 35$

Amount of Substance - 4

I.
(a)
moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ used in the titration:
$n\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=\frac{33.50 \mathrm{~cm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}}{1000}=0.00335 \mathrm{~mol}$
moles of I_{2} reacted:
$n\left(I_{2}\right)=0.00335 \mathrm{~mol} / 2=0.001675 \mathrm{~mol}$
moles of ClO^{-}in the $25.0 \mathrm{~cm}^{3}$ of the diluted bleach solution: $n\left(\mathrm{ClO}^{-}\right)=n\left(\mathrm{I}_{2}\right)=0.001675 \mathrm{~mol}$
moles of ClO^{-}in the $100 \mathrm{~cm}^{3}$ flask (original $10 \mathrm{~cm}^{3}$ sample):
$n\left(\mathrm{ClO}^{-}\right)$in original $10 \mathrm{~cm}^{3}$ sample $=0.001675 \mathrm{~mol} \times 4=0.00670 \mathrm{~mol}$
mass of NaClO in the original bleach solution:
Mass of $\mathrm{NaClO}=0.00670 \mathrm{~mol} \times 74.5 \mathrm{~g} \mathrm{~mol}^{-1}=0.499 \mathrm{~g}$
total mass of the $10.0 \mathrm{~cm}^{3}$ bleach solution:

Mass of bleach solution $=10.0 \mathrm{~cm}^{3} \times 1.20 \mathrm{~g} \mathrm{~cm}$
percentage by mass of NaClO in the original bleach solution:
Percentage by mass of $\mathrm{NaClO}=(0.499 \mathrm{~g} / 12.0 \mathrm{~g}) \times 100=4.16 \%$
(b)
A. 0.45%
2. C
3.
(a)

Molar mass of $\mathrm{NaF}=42.0 \mathrm{~g} / \mathrm{mol}$
Moles of $\mathrm{NaF}=2.88 \times 10^{-5} \mathrm{~mol}$
The mass of NaF is:
Mass of NaF
$=n(\mathrm{NaF}) \times$ Molar mass of NaF
$=2.88 \times 10^{-5} \mathrm{~mol} \times 42.0 \mathrm{~g} / \mathrm{mol}=1.2096 \times 10^{-3} \mathrm{~g}$
Mass of NaF in $\mathrm{mg}=1.2096 \times 10^{-3} \mathrm{~g} \times 1000=1.2096 \mathrm{mg}$
Concentration of NaF in ppm
$=1.2096 \mathrm{mg} / 0.001 \mathrm{~kg}$
$=1209.6 \mathrm{ppm}$
Concentration of $\mathrm{NaF}=1210 \mathrm{ppm}$
(b)

Given toxic concentration:
$3.19 \times 10^{-2} \mathrm{~g} / \mathrm{kg}$
maximum mass for a 75.0 kg person:
$3.19 \times 10^{-2} \mathrm{~g} / \mathrm{kg} \times 75.0 \mathrm{~kg}=2.3925 \mathrm{~g}$
Convert to milligrams:
$2.3925 \mathrm{~g} \times 1000=2392.5 \mathrm{mg}$
significant figures:
Maximum mass of $\mathrm{NaF}=2390 \mathrm{mg}$
(c)

Maximum mass of $\mathrm{NaF}=2390 \mathrm{mg}$

Toothpaste concentration to $\mathrm{mg} / \mathrm{kg}$:

$$
2800 \mathrm{ppm}=2800 \mathrm{mg} / \mathrm{kg}
$$

Mass of toothpaste:

Mass of toothpaste $=2390 \mathrm{mg} / 2800 \mathrm{mg} / \mathrm{kg}=0.854 \mathrm{~kg}$
(d)

Correct relative sizes of the ions in sodium fluoride shown in B

B
Sodium ion $\left(\mathrm{Na}^{+}\right)$and fluoride ion (F^{-}) have the same electron arrangement or are isoelectronic ($1 s^{2} 2 s^{2} 2 p^{6}$).

Sodium ion (Na^{+}) has more protons than fluoride ion (F^{-}), which results in stronger attraction for outer electrons.

This stronger attraction results in sodium ion (Na^{+}) being less in size compared to fluoride ion (F^{-}) (Sodium (ion) has more protons so attracts (outer) electrons closer) due to higher charge density and stronger electrostatic forces.
4. A
5.
(a)

Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ after heating $=0.57 \mathrm{~g}$
Mass of water lost $=0.55 \mathrm{~g}$
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=105.99 \mathrm{~g} / \mathrm{mol}$
Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Mass $/$ Molar mass

$$
=0.57 \mathrm{~g} / 105.99 \mathrm{~g} / \mathrm{mol}=0.00538 \mathrm{~mol}
$$

```
Moles of \(\mathrm{H}_{2} \mathrm{O}=\) mol \(0.55 \mathrm{~g} / 18.015 \mathrm{~g}=0.03056 \mathrm{~mol}\)
Ratio \(=\) Moles of \(\mathrm{H}_{2} \mathrm{O} /\) Moles of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\)
    \(=0.03056 / 0.00538=5.68\)
```

(b)

The difference between the experimental value of $x(5.68)$ and the correct value (10) is due to:

Incomplete removal of water:

The experimental heating process did not completely remove all water molecules from the hydrated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$.

This incomplete dehydration led to a lower measured mass of water lost, resulting in a lower calculated value of x.

To improve the accuracy of determining xxx in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ using the same apparatus:

Heat the sample to constant mass:
Ensure complete dehydration by heating until the mass remains unchanged, indicating all water has been driven off.

Use a smaller sample mass:

This allows for more uniform heating and reduces the risk of incomplete dehydration, leading to more accurate results.

6. C

7.

Given:

Mass of $\mathrm{H}_{2} \mathrm{~S}=5.00 \mathrm{~g}$
Molar mass of $\mathrm{H}_{2} \mathrm{~S}=34.1 \mathrm{~g} / \mathrm{mol}$
Moles of $\mathrm{H}_{2} \mathrm{~S}$:
Moles=Mass $/$ Molar mass $=5.00 \mathrm{~g} / 34.1 \mathrm{~g} / \mathrm{mol}=0.1466 \mathrm{~mol}$
$\mathrm{H}_{2}+\mathrm{S} \rightarrow \mathrm{H}_{2} \mathrm{~S}$

Moles of H_{2} needed $=$ moles of $\mathrm{H}_{2} \mathrm{~S}=0.1466 \mathrm{~mol}$ $P V=n R T$

$$
\begin{gathered}
V=\frac{n R T}{p} \\
V=\frac{0.1466 \times 0.0821 \times 298}{1}
\end{gathered}
$$

$$
V=3.59 \mathrm{~L} \times 1000 \mathrm{~cm}^{3} / \mathrm{L}=3590 \mathrm{~cm}^{3}
$$

8. D
9.

Moles of $S=10.0 \mathrm{~g} / 32 \mathrm{~g} / \mathrm{mol}=0.312 \mathrm{~mol}$
From the balanced equation $\mathrm{S}+2 \mathrm{Na} \rightarrow \mathrm{Na}_{2} \mathrm{~S}$
Molar mass of $\mathrm{Na}_{2} \mathrm{~S}=78.042 \mathrm{~g} / \mathrm{mol}$
Mass of $\mathrm{Na}_{2} \mathrm{~S}=$ Moles of $\mathrm{S} \times$ Molar mass of $\mathrm{Na}_{2} \mathrm{~S}$

$$
=0.312 \mathrm{~mol} \times 78.04 \mathrm{~g} / \mathrm{mol}=24.37 \mathrm{~g}
$$

10. A

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

