CHEMISTRY ONLINE
 - TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

CHEMISTRY

Physical Chemistry

```
Level & Board
```

TOPIC:

PAPER TYPE:11

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Atomic Structure Mark Scheme - 2

1. (a)

Current model includes: Neutrons and protons in the nucleus whereas Rutherford doesn't

Current model shows electrons revolving around in different energy levels whereas Rutherford model doesn't.
(b)
${ }^{54} \mathrm{Fe}^{+}$
Relative Atomic mass $=\Sigma$ isotopic mass \times abundance $/$ Total abundance First, calculate the missing abundance

Isotope	Abundance
54	5.8%
56	91.8%
57	2.1%

Add all percentages together so $=5.8+91.8+2.1=99.7 \%$
(one mark for this)
Therefore, the abundance of isotope 58 is $=100-99.7=0.3 \%$ Now put in the values into the R.A.M formulae $=$

$$
\begin{aligned}
& =(54 \times 5.8)+(56 \times 91.8)+(57 \times 2.1)+(58 \times 0.3) / 100 \\
& =313.2+5140.8+119.7+17.4 / 100 \\
& =5591.1 / 100 \\
& =55.91
\end{aligned}
$$

2. (d)
3. (a)
4. (c)
5. (d)
6. (a)

The number of protons and electrons in the nucleus is called the mass number.
(b)
${ }^{50} \mathrm{Cr}$

```
Protons \(=24\)
Neutrons \(=26\)
Electrons \(=24\)
\({ }^{54} \mathrm{Cr}^{2+}\)
Protons \(=24\)
Neutrons \(=30\)
Electrons \(=22\)
```

Now let's:
Calculating the percentage abundance of
${ }^{56} \mathrm{Ni}$ is the sample;
Let's ${ }^{59} \mathrm{Ni}^{+}$be y
So, ${ }^{57} \mathrm{Ni}^{+}=2 y$
${ }^{58} \mathrm{Ni}^{+}=2 y$
${ }^{61} \mathrm{Ni}=2 y$
Let's apply the formulae R.A.M calculation
$58.1=(56 \times(100-7 y))+(57 \times 2 y)+(58 \times 2 y)+(59 x y)+(61 \times 2 y) / 100$
$58.1 \times 100=(5600-392 y)+(114 y)+(116 y)+(59 y)+(112 y)$
$5810=5600-392 y+114 y+116 y+59 y+112 y$
$5810=5600-392 y+114 y+411 y$
$5810-5600=19 y$
$210 / 19=19 y / 19$
$y=11 \%$
So, abundance is as follows:
${ }^{59} \mathrm{Ni}^{+}=11 \%$
${ }^{57} \mathrm{Ni}^{+}=22 \%$
${ }^{58} \mathrm{Ni}^{+}=22 \%$
${ }^{59} \mathrm{Ni}^{+}=11 \%$
${ }^{61} \mathrm{Ni}^{+}=22 \%$
Now, the abundance of ${ }^{56} \mathrm{Ni}^{+}$
$=[100-(11+22+22+11+22)]$
$=[100-88]$
$=12 \%$
7. (c)
8. (a)

Average mass of an atom of an element compound to $1 / 12^{\text {th }}$ of the mass of an atom of carbon-12 Tip: Don't forget to use the word average in R.A.M. definition.
(b)

$$
\begin{aligned}
\text { Relative atomic mass }= & (54 \times 4)+(56 \times 2)+(57 \times 14)+(58 \times 6) / 26 \\
& =216+112+798+348 / 26 \\
& =1474 / 26 \\
& =56.6
\end{aligned}
$$

(c)

Important information:
$K . E=3.63 \times 10^{-14} \mathrm{~J}$
Time: $1.2 \times 10^{-3} \mathrm{~s}$
10n: ${ }^{58} \mathrm{Fe}^{+}$
Step 1: Calculate the mass of the single ion

$$
\begin{aligned}
& =10 \mathrm{~m} \text { mass / Avogadro's No } \\
& =58 / 6.02 \times 10^{23} \\
& =9.63 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

Step 2: K.E $=1 / 2 m v^{2}$
Tip: Don't forget to convert the mass of a single into kg before plugging in the value of mass.

$$
3.63 \times 10^{-14}=1 / 2\left(9.63 \times 10^{-26}\right)\left(v^{2}\right)
$$

$$
\left(3.63 \times 10^{-14}\right) 2=\left(9.63 \times 10^{-26}\right)\left(v^{2}\right)
$$

$$
v=V\left(3.63 \times 10^{-14}\right) 2 /\left(9.63 \times 10^{-26}\right)
$$

$$
868270 \mathrm{~m} / \mathrm{s}
$$

Step 3: Distance traveled $=$ velocity \times time

$$
\begin{aligned}
& =868270 \times\left(1.2 \times 10^{-3}\right) \\
& =1041 \mathrm{~m}
\end{aligned}
$$

9. (a)
10. (c)
II. (a)

The average mass of an atom of an element compound to $1 / 12^{\text {th }}$ of the mass of an atom of carbon-12
Tip: Don't forget to use the word average in the R.A.M. definition.
(b)
${ }^{45} 5 \mathrm{C}$ is 76.1% abundant
Let x be the abundance of ${ }^{43} 5 \mathrm{C}$
Therefore, the abundance of ${ }^{465 C}$ is $=(100-76.1)-x$

$$
=(23.9-x)
$$

Now let's calculate abundance and apply R.A.M calculation formulae $44.9=(43 x x)+(45 \times 76.1)+(46 \times(23.9-x)) / 100$
$44.9 \times 100=43 x+3424.5+1099.4-46 x$
$4490=43 x+4523.9-46 x$
$4490-4523.9=-3 x$
$-33.9=-3 x$
$x=11.3 \%$
(c)

Similarity: same number of protons
Difference: different number of neutrons
(d)

Reason: Ions could be accelerated
Reason: Ions create a current when it hits the detector.
(e)

Important information:
Length of tube $=1.35 \mathrm{~m}$
Kinetic energy $=1.3 \times 10^{-12} \mathrm{~J}$
$10 \mathrm{n}={ }^{43} \mathrm{Sc}^{+}$
Step 1: calculate mass of single in of SC
$=$ Mass $/ N_{A}=43 / 6.02 \times 10^{23}=7.14 \times 10^{-23} \mathrm{~g}$
Convert into kg to be used in K.E equation
$=7.14 \times 10^{-23} / 1000=7.14 \times 10^{-26} \mathrm{~kg}$
Step 2:

```
K.E = I/ 2mv 
1.3\times1\mp@subsup{0}{}{-12}=1/2(7.14\times1\mp@subsup{0}{}{-26})(\mp@subsup{v}{}{2})
(1.3\times1\mp@subsup{0}{}{-12})2=(7.14\times1\mp@subsup{0}{}{-26})(\mp@subsup{\textrm{v}}{}{2})
(1.3\times1\mp@subsup{0}{}{-12})/(7.14\times1\mp@subsup{0}{}{-26})=\mp@subsup{v}{}{2}
\sqrt{}{2.6\times1\mp@subsup{0}{}{-12}/(7.14\times1\mp@subsup{0}{}{-26})=v}\=v
v = 6 0 3 4 4 4 8 \mathrm { m } / \mathrm { s }
```

Step 3:
velocity $=$ distance $/$ time
$6034448=1.35 /$ time
time $=1.35 / 6034448$
$=2.2 \times 10^{-7}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

