

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

CHEMISTRY

Physical Chemistry

Level \& Board	AQA (A-LEVEL)
TOPIC:	
ATOMIC STRUCTURE	
PAPER TYPE:	
SOLUTION -1	
TOTAL QUESTIONS	14
TOTAL MARKS	77

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Atomic Structure - 1

1.

D. $\mathrm{X}(\mathrm{g})+\mathrm{H}^{+} \rightarrow \mathrm{XH}^{+}(\mathrm{g})$
2.
C. Silicon
3.
(a)

Remember the following steps of Electrospray ionisation.
1 .Sample dissolve in a volatile solvent.
2 .Then injected into the spectrometry through the hypodermic needle having high voltage at the tip.
3 .As soon as molecules comes out, solvent being volatile evaporates away and sample gains H^{+}ion.
(b)

$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{NH}^{+}$

This would be detected as it.
(c)
$\mathrm{Ge}_{(\mathrm{g})}+\rightarrow \mathrm{Ge}^{+}{ }_{(\mathrm{g})}{ }^{+} \mathrm{e}^{-}$
(d)

Step 1: Highlight important information
Time $\Rightarrow 4.654 \times 10^{-6} \mathrm{~s}$
$\mathrm{K} . \mathrm{E} \Rightarrow 2.438 \times 10^{-15} \mathrm{~J}$
Length of tube $=96 \mathrm{~cm}$
Convert in meters $=96 / 100=0.96 \mathrm{~m}$
Step 2: Calculate velocity
$\mathrm{v} \Rightarrow \mathrm{d} / \mathrm{t}=0.96 / 4.654 \times 10^{-6}=206274 \mathrm{~m} / \mathrm{s}$
Now we know K.E

Step 3: $2.438 \times 10^{-15}=1 / 2(\mathrm{~m})(206274)^{2}$
$\left.\left(2.438 \times 10^{-15}\right)^{2} / 206272\right)^{2}=$

Step 4: Multiply by N_{A}

This is mass of one in kg
4.
(a)

1 Sample dissolved in volatile solvent.
2. Solvent + sample mixture is injected into the mass spectrometer using needle.
3. The needle is attached to a high voltage, and as soon as the molecule comes out, it attains an H^{+}ion.
(b)

555
(c)

Highlight important information
K.E $=2.09 \times 10^{-15}$

Time $=1.23 \times 10^{-5} \mathrm{~s}$
Length of tube $=1.5 \mathrm{~m}$
We know that

$$
\begin{aligned}
& \text { velocity }=1.5 / 1.23 \times 10^{-5} \\
& =121951 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now:

$$
\begin{aligned}
& \mathrm{K} . \mathrm{E}=1 / 2 \mathrm{mv}^{2} \\
& 2.09 \times 10^{-15}=1 / 2(\mathrm{~m})(121951) \\
& \left(2.09 \times 10^{-15}\right) \times 2 /(121951)^{2}=\mathrm{m} \\
& \mathrm{~m}=2.81 \times 10^{-25} \mathrm{~kg}
\end{aligned}
$$

This is the mass of single in this time, multiply this by N_{A} to calculate molecular mass.
$2.81 \times 10^{-25} \mathrm{~kg} \times \mathrm{N}_{\mathrm{A}}$
$=0.169 \mathrm{~kg}$
$=169 \mathrm{~g}$
5.
A.H
6.
(a)

- Central nucleus has protons and neutrons.
- Electrons revolve around the nucleus in specified pathways known as shells.
(b)

Ans: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(c)

Ans: NaCl

7.

(a)
$\mathbf{C l}^{-}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s} 23 \mathrm{p} 6\{$ chlorine in not atom $\}$
$\mathbf{F e}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6}\{$ take away point : learn transition metal configuration\}
(b)
$\mathrm{Mn}_{(\mathrm{g})}{ }^{2+} \rightarrow \mathrm{Mn}_{(\mathrm{g})}{ }^{3+}+\mathrm{e}$
Take away point: never miss to mention gases (g) in ionization energy definition.
(c)

Aluminum has lower ionization energy as compared to
magnesium because electron in aluminum is removed from p orbital.

Aluminum configuration $\Rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
Magnesium $\Rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
(d)

Ion reaching detector $={ }^{58} \mathrm{Ni}^{+}$
R.A.M $=\Sigma$ isotopic mass \times abundance $/$ Total abundance
$=(58 \times 61)+(60 \times 29.1)+(61 \times 9.9) / 100$
$=3538+1746+603.9 / 100$
$=58.879$
8.
(a)

Three isotopes different only in number of Neutrons.
(b)

Chemical properties are same because Electronic Configuration is same in isotopes.
(c)

Let Mg^{24} be $=\mathrm{x}$
We know Mg^{25} be $=10 \%$
Therefore Mg^{26} would be (100-10)=90- x

$$
\text { R.A.M } 24.3=24 x+(25 \times 10)+(26 \times(90-x) / 100
$$

$24.3 \times 100=24 \mathrm{x}+250+(2340-26 \mathrm{x})$
$2430=24 \mathrm{x}+250+(2340-26 \mathrm{x})$
$2430-2340-250=24 x-26 x$
$2430-2590=-2 \mathrm{x}$
$-160 / 2=-2 x / 2$

$$
x=80 \%
$$

Now we know Mg^{24} is $=80 \%$
So $\mathrm{Mg}^{24}=100-10-80$
$=100-90=10 \%$
(d)

Step1: Highlight Important Information

K.E $=4.52 \times 10^{-16}$

Time $=1.44 \times 10^{-5}$
Ion given $=25 \mathrm{Mg}^{+}$
K.E $=1 / 2 \mathrm{mv}^{2}$

Step2: Calculate mass of single atom of Mg
Convert grams into kg because K.E equation kg are used.

Step 3: $4.52 \times 10^{-16}=(\mathrm{m})\left(\mathrm{v}^{2}\right)$
$4.52 \times 10^{-16}=1 / 2\left(4.15 \times 10^{-26}\right)\left(\mathrm{v}^{2}\right)$
$\left(4.52 \times 10^{-16}\right)(2)=v$
4.15×10^{-26}
$\mathrm{v}=147591 \mathrm{~m} / \mathrm{s}$
Step 4: distance $=$ velocity \times time $147591 \times\left(1.44 \times 10^{-5}\right)$
$=2.125$ meter
9.

$$
\text { (b) }[\mathrm{Ne}] 3 \mathrm{~s}^{2}
$$

10. (a)

$$
\begin{aligned}
\text { R.A.M } & =\Sigma \text { isotopic mass } \times \text { abundance } / \text { Total Abundance } \\
& =(82 \times 5)+(83 \times 3)+(84 \times 26)+(86 \times 7) / 41 \\
& =410+249+2184+602 / 41 \\
& =84.024
\end{aligned}
$$

let's say kinetic energy of ${ }^{82} \mathrm{Q}$ is $\Rightarrow \mathrm{K} . \mathrm{E}=1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}$
similarly kinetic energy of ${ }^{86} \mathrm{Q}^{+}$is $\Rightarrow \mathrm{K} . \mathrm{E}=1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2}$
As kinetic energy is the same for both so we can equal them.

$$
\begin{aligned}
& \mathrm{K} \cdot \mathrm{E}_{1}=\mathrm{K} \cdot \mathrm{E}_{2} \\
& 1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{21}=1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2} \rightarrow(1)
\end{aligned}
$$

Now $1 / 2$ cancels out on both sides

$$
\mathrm{m}_{1} \mathrm{v}_{1}^{2}=\mathrm{m}_{2} \mathrm{v}_{2}^{2} \rightarrow(2)
$$

we know that velocity $=$ distance $/$ time

$$
\begin{aligned}
& \mathrm{m}_{1}\left(\mathrm{~d}_{1} / \mathrm{t}_{1}\right)^{2}=\mathrm{m}_{2}\left(\mathrm{~d}_{2} / \mathrm{t}_{2}\right)^{2} \\
& \mathrm{~m}_{1} \cdot \mathrm{~d}_{1}{ }^{2} / \mathrm{t}_{1}{ }^{2}=\mathrm{m}_{2} \cdot \mathrm{~d}_{2}{ }^{2} / \mathrm{t}_{2}{ }^{2}
\end{aligned}
$$

As distance is the same far both ions so

$$
\mathrm{m}_{1} / \mathrm{t}_{1}{ }^{2}=\mathrm{m}_{2} / \mathrm{t}_{2}{ }^{2}
$$

Now, lets put in the values

$$
\begin{aligned}
& 82 /\left(1.243 \times 10^{-5}\right)^{2}=86 /(x)^{2} \\
& x=86 \times\left(1.243 \times 10^{-5}\right)^{2} / 82 \\
& x=1.273 \times 10^{-5} \mathrm{~s}
\end{aligned}
$$

11.

C. The mass spectrum of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ has two molecular ion peaks at 122 and 124

12.

(a) $\mathrm{Ca}_{20}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2}$
(b) $\quad \mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}_{2}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{I}_{(\mathrm{g})}$
(c) Oxidizing agent
(d) $\quad \mathrm{Ca}_{(\mathrm{g})} \rightarrow \mathrm{Ca}_{(\mathrm{g})}+\mathrm{e}^{-}$
(e) As we move from magnesium to barium, the size of the ion gets bigger as move shells are added.

Therefore, it becomes easier to lose electrons from the shell further away from the nucleus. As size get bigger, the attraction between the nucleus and the electron get weaker
13.
(a)
let x be the isotopic mass of third isotopes
R.A.M $=\Sigma$ isotoic mass \times abundance $/$ Total abundance

$$
\begin{aligned}
& 3216=(32 \times 91)+(33 \times 1.8)+(x+7.2) / 100 \\
& 32.16 \times 100=(32 \times 91)+(33 \times 1.8)+(7.2 x) \\
& 3216=2912+59.4+7.2 x \\
& 3216-2971.4=7.2 x
\end{aligned}
$$

$$
\begin{aligned}
& 244.6 / 7.2=7.2 x / 7.2 \\
& x=33.972 \\
& x=34
\end{aligned}
$$

(b)

- Electron impact method
- Electrospray ionization

Electron Impact ionization (EI) - The sample is vapourized and injected into the ionization chamber. The gas phase molecules are B ombarded by a beam of electrons formed by heating a filament bias at a negative voltage compared to the source.
(b)

Ions are detected by the detector present at the last in spectrometry
14.
(a)

$\left[\mathrm{CH}_{3} \mathrm{OCOCOOH}\right]^{+}$

$\left[\mathrm{CH}_{3} \mathrm{OCOCOOHCH}_{3}\right]^{+}$
Note: Ester linkage has developed between alcohol and acid
(b) One ions are formed in ionization chamber, they are accelerated by an electric field to a constant kinetic energy. Both species/positives would be accelerated by different velocity because of different masses.

Lighter ions are going to move
faster and heavier one's are going to move slower. These is going separate these two ions.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

