CHEMISTRY ONLINE - TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

CHEMISTRY

Physical Chemistry

Level \& Board

AQA (A-LEVEL)

TOPIC:
ATOMIC STRUCTURE

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS 48

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Atomic structure AQA -5

Q. 1 (b)
Q. 2 (c)
Q. 3 (c) Hydrogen with mass number I has zero neutrons
Q. 4 (b)
Q. 5 (b) Neon has the lightest first ionization energy
Q. 6 (a) Explain
Q. 7 (b)
Q. 8 (c)
Q. 9 (a)
Q. 10 (c)
Q. 11 (b)
Q. 12 (d)
Q. 12 (d)
Q. 13 (b)
Q. 14
(a)

- Current model includes: Neutrons and protons whereas Rutherford doesn't.
- Current model shows electrons revolving, around in different energy levels where as Rutherford model doesn't
(b) ${ }^{20} \mathrm{Ne}^{+}$

Lightest ion is going to reach to h first the delector First

First calculate the missing abundance

Isotope	Abundance
Neon-20	90.9
Neon-21	0.3
Neon-22	$100-(90-9+0.3=8.8$

Now play in the values into the R.A.M

$$
\begin{aligned}
R . A . M & =\frac{\sum(20 \times 90.9)+(21 \times 0.3)+(22 \times 8.8)}{100} \\
& =\frac{1818+6.3+193.6}{100} \\
& =\frac{2017.9}{100} \\
& =20.179
\end{aligned}
$$

Q. 15

(a) The number of Protons are follows as Atomic no
(b) Look at question people
(c) First calculate the percentage abundance of ${ }^{58} \mathrm{Ni}+$ in the

Sample

$$
\begin{aligned}
& \text { Let } \\
& { }^{62} \mathrm{Ni}^{+} \text {be }=y \\
& \text { SO, }{ }^{60} \mathrm{Ni}^{+}=2 y \\
& { }^{58} \mathrm{Ni}^{+}=3 y \\
& \text { Let's apply the formula of R.A.M } \\
& 58.7=\frac{(62 \times y)+(60 \times 2 y)+(58 \times 3 y)}{100} \\
& 58.7 \times 100=62 y+120 y+174 y \\
& 5870=356 y \\
& y=16.48 \%
\end{aligned}
$$

Therefore, the abundance of ${ }^{58} \mathrm{Ni}^{+} 16.48 \%$ is

Q. 16

(a)

Relative atomic mass is the average mass of an atom compared to $\frac{1}{12^{\text {th }}}$ of mass of an atom of carbon-12
(b) Formula

$$
\begin{aligned}
& \text { R.A. } M=\frac{\sum \text { isotopic mass } \times \text { abundance }}{100} \\
& =\frac{(36 \times 70)+(38 \times 10)+(40 \times 20)}{100} \\
& =\frac{(2520)+(380)+(800)}{100} \\
& =\frac{3700}{100} \\
& =37 \mathrm{amu}
\end{aligned}
$$

(c) Important information

$$
\begin{aligned}
& K . E=4.83 \times 10^{-16} \mathrm{~J} \\
& t=1072 \times 10^{-5} \mathrm{~s} \\
& \text { Ion }=20 \mathrm{Ne}^{+}
\end{aligned}
$$

Step I: Calculate the mass of single ion of ${ }^{20} \mathrm{Ne}$ + by dividing if by Avogadro's number

Mass of one ion

$$
\begin{aligned}
& =\frac{20}{6.02 \times 10^{23}} \\
& =3.32 \times 10^{-3} g
\end{aligned}
$$

Convert into kg to be used in next equation

$$
=\frac{3.32 \times 10^{-23}}{1000} \mathrm{~kg}=3.32 \times 10^{-26} \mathrm{~kg}
$$

Step 2: we know

$$
\begin{aligned}
& K . E=\frac{1}{2} m v^{2} \\
& 4.83 \times 10^{-16}=\frac{1}{2}\left(3.32 \times 10^{-26}\left(v^{2}\right)\right. \\
& v=\sqrt{\frac{2\left(4.83 \times 10^{-16}\right)}{3.32 \times 10^{-26}}} \\
& v=170046 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(d) Velocity $=\frac{\text { distance }}{\text { time }}$

$$
\begin{aligned}
& =\frac{x}{1.72 \times 10^{-5}} \\
& x=2.92 \mathrm{~m}
\end{aligned}
$$

Q. 17
(a)

Relative atomic mass is the average mass of an atom compared to $\frac{1}{12^{t h}}$ of mass of an atom of carbon-12
(b) Calculate the abundance of two isotopes

Step 1: Let's assume the abundance of ${ }^{\text {so }} \mathrm{X}$ be $=x$

Question tell us that ${ }^{52} X=86.1$
The abundance of ${ }^{58} \mathrm{X}$ will be

$$
\begin{gathered}
=(100-(86.1)-x) \\
=13.9 x
\end{gathered}
$$

Now,

Isotope	abundance
${ }^{50} \mathrm{X}$	x
${ }^{52} \mathrm{X}$	86.1
${ }^{53} \mathrm{X}$	$13.9 x$

Step 2 Apply the formula;
$52.1=\frac{(50 \times x)+(52 \times 86.1)+(53 \times(13.9-x))}{100}$
$52.1 \times 100=50 x 4477.2+736.7-53 x$
$5210=50 x-53 x+5214.1$
$5210-5214=-3 x$
$-4.1=-3 x$
Divide both sides by 3, therefore

$$
1.3=x
$$

The abundance are as follows:
${ }^{50} \mathrm{X}=1.3 \%$
${ }^{52} X=86.1 \%$
${ }^{53} \mathrm{X}=12.6$

(C) similarly

- Both have same protons number present in nucleus
- Both contain same Electron number revolving around the nucleus

Difference

- Different number of Neutrons
(d) Ions cab be accelerated by an Electric field Ions generate current when hitting the detector which is proportional is this abundance
(c) Important information

$$
\begin{aligned}
& \text { Length }=1.25 \mathrm{~m} \\
& K . E=1.102 \times 10^{-13} \\
& \text { lon }=53 \mathrm{X}^{+}
\end{aligned}
$$

Step 1: Calculate the mass of single ion so divide ' 53 ' by Avogadro's number

$$
\begin{aligned}
& =\frac{53}{6.022 \times 10^{23}} \\
& =8.80 \times 10^{-23} g
\end{aligned}
$$

Step 2: Convert the mass calculated in grams to kg to be used in K.E equation

$$
\begin{aligned}
& \text { SO, } \\
& =\frac{8.80 \times 10^{-23}}{1000} \\
& =8.80 \times 10^{-26} \mathrm{~kg}
\end{aligned}
$$

$$
K \cdot E=\frac{1}{2} m v^{2}
$$

$$
1.102 \times 10^{-13}=\frac{1}{2}\left(8.80 \times 10^{-26}\right)\left(v^{2}\right)
$$

$$
\sqrt{\frac{\left(1.12 \times 10^{-13}\right) 2}{8.80 \times 10^{-26}}}=v
$$

$$
v=\frac{1119049 m}{s}
$$

$$
\begin{gathered}
\text { Step3: } \quad \text { velocity }=\frac{\text { distance }}{\text { time }} \\
1119049=\frac{1.25}{x} \\
x=\frac{1.25}{1119049} \\
=1.1170 \times 10^{-6} \mathrm{~S}
\end{gathered}
$$

Trends in the first ionization energy from sodium to Argon

Q. 20

(a) The ionization process can be described as follows:
(i) A high voltage creates charged droplets from a solution containing biomolecule P.
(ii) Solvent molecules evaporate from these droplets.
(iii) Highly charged, desolvated ions of P are formed.
(iv) These ions are introduced into the mass spectrometer for analysis.

The ionization equation is:
P (in solution) $\rightarrow P^{+}$(gas phase) $+e^{-}$.
In this equation, " P " represents biomolecule P in solution, " $P+$ " represents the positively charged ion of biomolecule P in the gas phase, and " e^{-1} represents the electron removed from biomolecule P during the ionization process. The positive charge on biomolecule P allows it to be analyzed in a mass spectrometer, and the mass-to-charge ratio $(\mathrm{m} / \mathrm{z})$ of the resulting ions is 556 results.
(b) 555
(c) Important information

$$
\begin{aligned}
& K . E=2.09 \times 10^{-15} \\
& \text { time }=1.23 \times 10^{-5} \\
& \text { Length }=1.5 \mathrm{~m}
\end{aligned}
$$

Step I: Calculate the velocity

$$
\begin{array}{r}
\text { velocity }=\frac{\text { distance }}{\text { time }} \\
=\frac{1.5}{1.23 \times 10^{-5}} \\
=121951 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Step 2:
$K \cdot E=\frac{1}{2} m v^{2}$
$2.09 \times 10^{-15}=\frac{1}{2}(m)(121951)^{2}$
$\frac{\left(2.09 \times 10^{-15}\right) 2}{(121951)^{2}}=v$
$m=\frac{4.18 \times 10^{-15}}{(121951)^{2}}$
$m=2.8 \times 10^{-25} \mathrm{~kg}$
This is the mass of single ion

Step 3: We need to calculate molecules mass
So, multiply it by Avogadro's constant
$=\left(2.8 \times 10^{-25}\right)\left(6.02 \times 10^{23}\right)$
$=0.1692 \mathrm{~kg}$
Convert it into grams
$=0.1692 \times 1000=169.2$ grams

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

. UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: Www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

