

## CHEMISTRY ONLINE



Phone: +442081445350
www.chemistryonlinetuition.com

## Email:asherrana@chemistryonlinetuition.com

## CHEMISTRY PHYSICAL CHEMISTRY

## Level \& Board

AQA (A-LEVEL)

TOPIC: CHEMICAL EQUILIBRIA

PAPER TYPE:
SOLUTION -1

## Chemical Equilibria - 2

I.
(a)
$P(g)+Q(g) \rightleftharpoons 2 R(g)$
According to the balanced equation, for every 1 mol of $P$ or $Q$ that reacts, it produces 2 mol of $R$. So, if $x$ mol of $P$ reacts, it generates $2 \times \mathrm{mol}$ of $R$. So,

At equilibrium: Amount of $R$ (in terms of $x$ ) $=2 \times \mathrm{mol}$
(b)

Given the equilibrium constant $K c=3.6$ for the reaction:
At equilibrium, let's assume the concentration of $R$ formed is $2 x$ (as previously established) and the concentrations of $P$ and $Q$ that react are (1-x) each.
Using the Kc expression:
$K c=\frac{[\mathrm{R}]^{2}}{[\mathrm{P}][\mathrm{Q}]}$
$3.6=\frac{[2 \mathrm{x}]^{2}}{[(1-\mathrm{x})][(1-\mathrm{x})]}$
$3.6=\frac{[2 \mathrm{x}]^{2}}{(1-\mathrm{x})^{2}}$
$\sqrt{3.6}=\frac{2 \mathrm{x}}{1-\mathrm{x}}$
$\sqrt{3.6}-\sqrt{3.6} x=2 x$
$1.9=3.9 x$
$x=0.49$
So,
$[R]=0.97 \mathrm{~mol} \mathrm{dm}^{-3}$
2.

The conditions for the industrial synthesis of hydrogen from methane and steam $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$ at $800^{\circ} \mathrm{C}$ and low pressure of 300 kPa in the presence of a nickel catalyst are primarily based on equilibrium yield and cost considerations:

## Equilibrium Yield:

At higher temperatures, the endothermic reaction ( $\Delta H=+206 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ) shifts towards the right side, favoring the production of hydrogen $\left(\mathrm{H}_{2}\right)$. Increasing the temperature helps counteract the endothermic nature of the reaction, facilitating higher yields of hydrogen. $50,800^{\circ} \mathrm{C}$ strikes a balance between favorable equilibrium yield and minimizing side reactions.

Cost:
Operating at lower pressures reduces costs associated with the construction and maintenance of high-pressure equipment. Although higher pressures would favor the side with fewer gas molecules (Le Chatelier's principle), increasing the pressure also increases operational expenses.
Therefore, a lower pressure of 300 kPa is chosen to maintain a balance between achieving a reasonable yield of hydrogen and cost-effectiveness.

## Catalyst Effect:

The use of a nickel catalyst enables the reaction to proceed at a reasonable rate while lowering the activation energy required for the reaction to occur. This facilitates a higher rate of reaction and helps achieve the desired equilibrium yield of hydrogen without excessively raising the operational temperature or pressure, thereby contributing to cost-effectiveness.

The chosen conditions of temperature, pressure, and catalyst usage aim to maximize the equilibrium yield of hydrogen while considering the practicality and cost-effectiveness of the industrial process. These conditions give a balance between obtaining a high yield of hydrogen and minimizing production costs, ensuring an efficient and economically viable hydrogen production process.
(Total 6 marks)
3. (C)
(Total I mark)
4.

## (a)

A decrease in overall pressure shifts the equilibrium towards the side with more gas molecules to counteract the pressure change. In this reaction, it shifts towards the reactants ( $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ ) to oppose the pressure decrease, decreasing the yield of $\mathrm{SO}_{3}$.
(b)

A 0.460 mol sample of $\mathrm{SO}_{2}$ is mixed with a 0.250 mol sample of $\mathrm{O}_{2}$ in a sealed container at a constant temperature.
When equilibrium is reached at a pressure of 215 kPa , the mixture contains 0.180 mol of $\mathrm{SO}_{3}$

Calculate the partial pressure, in kPa , of $\mathrm{SO}_{2}$ in this equilibrium mixture.
The balanced chemical equation for the formation of $\mathrm{SO}_{3}$ from $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ is:

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Initial moles:

- $\mathrm{SO}_{2}=0.460 \mathrm{~mol}$
- $\mathrm{O}_{2}=0.250 \mathrm{~mol}$

Change at equilibrium (based on the stoichiometry of the balanced equation):

- $\mathrm{SO}_{3}$ formed $=0.180 \mathrm{~mol}$

According to the balanced equation, 2 moles of $\mathrm{SO}_{2}$ produce 2 moles of $\mathrm{SO}_{3}$. Therefore, the moles of $\mathrm{SO}_{2}$ consumed will be the same as the moles of $\mathrm{SO}_{3}$ formed, which is 0.180 mol .

```
Amount of \(\mathrm{SO}_{2}\) at equilibrium
\(=\) Initial moles of \(\mathrm{SO}_{2}\) - Moles of \(\mathrm{SO}_{3}\) formed
\(=0.46 \mathrm{~mol}-0.18 \mathrm{~mol}\)
\(=0.28 \mathrm{~mol}\).
Amount of \(\mathrm{O}_{2}\) at equilibrium
\(=\) Initial moles of \(\mathrm{O}_{2}-\) Moles of \(\mathrm{O}_{2}\) used
\(=0.25 \mathrm{~mol}-\left(0.5 \times\right.\) Moles of \(\mathrm{SO}_{3}\) formed \()\)
\(=0.25 \mathrm{~mol}-0.09 \mathrm{~mol}\)
\(=0.16 \mathrm{~mol}\).
Total amount of gas at equilibrium
\(=\) Moles of \(\mathrm{SO}_{2}+\) Moles of \(\mathrm{O}_{2}+\) Moles of \(\mathrm{SO}_{3}\)
\(=0.28 \mathrm{~mol}+0.16 \mathrm{~mol}+0.18 \mathrm{~mol}\)
\(=0.62 \mathrm{~mol}\).
Partial pressure of \(\mathrm{SO}_{2}=\) Total pressure \(\times\) (Moles of \(\mathrm{SO}_{2} /\) Total moles of
gas \()=215 \mathrm{kPa} \times(0.28 \mathrm{~mol} / 0.62 \mathrm{~mol})\)
\(=215 \mathrm{kPa} \times 0.4516\)
\(=97.1 \mathrm{kPa}\).
```

(c)

$$
\mathrm{Kp}=\frac{(\mathrm{ppSO} 3)^{3}}{(\mathrm{ppO} 2)(\mathrm{SO} 2)^{2}}
$$

(d) (c)
s. (c)
(Total I mark)
6.
(a)

Using balance chemical equation:
$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}(\mathrm{I})$

| Amount in the mixture / mol |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | Diester | Water | Acid | Diol |  |
| At the start | 1 | 1 | 0 | 0 |  |
| At equilibrium | $1-x / 2$ | $1-x$ | $x$ | $x / 2$ |  |

(b)

Deduce the structure of the diester:

(1)
(c)

Given the equilibrium constant $K C=0.161$ for the reaction:
$\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}(\mathrm{I})$
Given the amounts of substances at equilibrium:

- Amount of diester $\left(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}\right)=0.971 \mathrm{~mol}$
- Amount of acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=0.452 \mathrm{~mol}$
- Amount of diol $\left(\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}\right)=0.273 \mathrm{~mol}$ The amount of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ at equilibrium Using the equilibrium constant expression:
$K C=\frac{[\mathrm{HO}(\mathrm{CH} 2) 3 \mathrm{OH}][\mathrm{CH} 3 \mathrm{COOH}]^{2}}{[\mathrm{C} 7 \mathrm{H} 12 \mathrm{O} 4] \cdot[\mathrm{H} 2 \mathrm{O}]^{2}}$
Now, put in the given values:
$[\mathrm{H} 2 \mathrm{O}]^{2}=\frac{(0.273)(0.452)^{2}}{(0.971)(0.161)}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=0.357$
Taking the square root of both sides to solve for $\left[\mathrm{H}_{2} \mathrm{O}\right]$ :
$\left[\mathrm{H}_{2} \mathrm{O}\right]=0.598$


## 7. (A)

## (Total I mark)

8. 

(a)

The nearest minute, when equilibrium is first established is 3 minutes as At equilibrium, ratefwd $=$ rate $_{\text {back }}$ so concentrations (of $\mathrm{O}_{2}$ and $\mathrm{SO}_{3}$ ) remain constant
(b)
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+196 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The higher temperature $\left(T_{2}\right)$ caused the equilibrium to shift to the right (towards the product side) in an endothermic direction, leading to a decrease in the concentration of sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ in the new equilibrium.
9.
(a)

A catalyst has no effect on the yield of methanol in this equilibrium as it increases the rate of both forward and reverse reactions equally without altering the final amount of methanol produced.
(2)
(b)

$$
\begin{gathered}
\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(g) \\
\mathrm{KC}=\frac{[\mathrm{CH} 3 \mathrm{OH}]}{[\mathrm{CO}][\mathrm{H} 2]^{2}}
\end{gathered}
$$

(c)

The given equilibrium reaction is:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium:

- Moles of $\mathrm{CO}=0.340 \mathrm{~mol}$
- Moles of $\mathrm{H}_{2}=0.190 \mathrm{~mol}$
- Moles of $\mathrm{CH}_{3} \mathrm{OH}=0.0610 \mathrm{~mol}$
[CO] $=0.340 \mathrm{~mol} / 0.250 \mathrm{dm}^{3}$
$=1.36 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}_{2}\right]=0.190 \mathrm{~mol} / 0.250 \mathrm{dm}^{3}$
$=0.76 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{CH}_{3} \mathrm{OH}\right]=0.0610 \mathrm{~mol} / 0.250 \mathrm{dm}^{3}$
$=0.244 \mathrm{~mol} \mathrm{dm}^{-3}$
$K_{C}=\frac{[\mathrm{CH} 3 \mathrm{OH}]}{[\mathrm{CO}][\mathrm{H} 2]^{2}}$
$K C=\frac{(0.244)}{(1.36)(0.76)^{2}}$
$=0.311 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
(d)
$K_{C_{\text {reverse }}}=1 / K_{c_{\text {forward }}}$
$K C_{\text {reverse }}=1 / 0.311$
$K C_{\text {reverse }}=3.22 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

10. 

(a)

Given:
Initial amount of $A=6.4 \times 10^{-3} \mathrm{~mol}$
Amount of $A$ at equilibrium $=3.9 \times 10^{-3} \mathrm{~mol}$
Using the given expression for the equilibrium amount of $A$ :

The balanced equation is $2 A+B \rightleftharpoons 3 C+D$, which means that 2 moles of $A$ react with I mole of $B$ to form 3 moles of $C$ and I mole of $D$.

$$
\mathrm{Kc}=\frac{[\mathrm{D}][\mathrm{C}]^{3}}{[\mathrm{~B}][\mathrm{A}]^{2}}
$$

Equilibrium amount of $A=6.4 \times 10^{-3}-2 x$
$3.9 \times 10^{-3}=6.4 \times 10^{-3}-2 x$
$2 x=6.4 \times 10^{-3}-3.9 \times 10^{-3}$
$2 x=2.5 \times 10^{-3}$
$x=1.25 \times 10^{-3}$
Now, let's calculate the amounts of substances at equilibrium:

- Moles of $B(x)=9.5 \times 10^{-3}-x$
$=9.5 \times 10^{-3}-1.25 \times 10^{-3}$
$=8.25 \times 10^{-3} \mathrm{~mol}$
- Moles of C (using $3 x$ ) $=2.8 \times 10^{-2}+3 x$
$=2.8 \times 10^{-2}+3 \times 1.25 \times 10^{-3}$
$=0.028+0.00375$
$=0.03175 \mathrm{~mol}$
- Moles of $D(x)=1.25 \times 10^{-3}$
$x=1.25 \times 10^{-3} \mathrm{~mol}$
(b)
(Kc) for this equilibrium and its units as

$$
\begin{aligned}
\mathrm{Kc}= & \frac{[\mathrm{D}][\mathrm{C}]^{3}}{[\mathrm{~B}][\mathrm{A}]^{2}} \\
& =\text { mol } \mathrm{dm}^{-3}
\end{aligned}
$$

(c)

The equilibrium reaction is: $2 A+B \rightleftharpoons 3 C+D$
Given:
Moles of $B$ at equilibrium $=0.21 \mathrm{~mol}$

Moles of $C$ at equilibrium $=1.05 \mathrm{~mol}$
Moles of $D$ at equilibrium $=0.076 \mathrm{~mol}$
Total volume of solution $=5.00 \times 10^{2} \mathrm{~cm}^{3}$
$=5.00 \times 10^{-1} \mathrm{dm}^{3}$
Equilibrium constant $(\mathrm{Kc})=116$
Let's denote the moles of $A$ as $x$.
Moles of $A=2 x$
Now, let's construct an expression for Kc using the given concentrations:

$$
\mathrm{Kc}=\frac{[\mathrm{D}][\mathrm{C}]^{3}}{[\mathrm{~B}][\mathrm{A}]^{2}}
$$

$K C=116$
$[B]=0.21 / 0.5 \mathrm{~mol} \mathrm{dm} m^{-3}$
$[C]=1.0510 .5 \mathrm{~mol} \mathrm{dm}^{-3}$
$[D]=0.076 / 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& 116=\frac{(0.076 / 0.5)(1.05 / 0.5)^{3}}{(0.21 / 0.5)(2 x)^{2}} \\
& 4 x^{2}=\frac{(0.076 / 0.5)(1.05 / 0.5)^{3}}{116(0.21 / 0.5)} \\
& 4 x^{2}=\frac{0.152 \times 74.088}{116 \times 0.42} \\
& 4 x^{2}=\frac{11.26}{48.72} \\
& x^{2}=\frac{11.26}{194.88} \\
& x=0.21
\end{aligned}
$$

(d)

Adding more water to the equilibrium mixture lowers all substance concentrations.
As $K c=$ mole ratio $\times 1 / N$
According to Le Chatelier's Principle, the equilibrium shifts to counteract this by favoring the side with more moles. Since water addition increases volume, the equilibrium moves to decrease mole ratios, causing the amount of $A$ to decrease.


- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor


## CONTACT INFORMATION FOR

## CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

