

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY PHYSICAL CHEMISTRY

AQA (A-LEVEL)
CHEMICAL EQUILIBRIA
SOLUTION -1
10
60

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

<u> Chemical Equilibria – I</u>

- 1. (A)
- 2. (D)

(Total I mark)

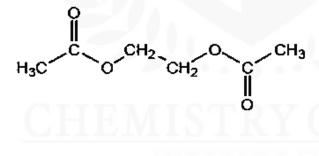
(Total I mark)

3. (a)

High pressure favors the side with fewer gas molecules, which in this case is the formation of methanol (CH_3OH).

Low temperature benefits the exothermic forward reaction. Both conditions enhance the yield of methanol by pushing the equilibrium towards its production.

(b)


The actual conditions used in the chemical industry might be different from those mentioned above as it can be too expensive to use a high pressure or could be too slow to use a low temperature.

(2)

(2)

4. (a)

Structural formula for the diester C6H10O4

()

(b)

Amount in the mixture / mol					
	CH3COOH	HOCH ₂ CH ₂ OH	C6H10O4	H_2O	
At the start	0.470	0.205	0	0	
At equilibrium	0.180	0.06	0.145	0.29	

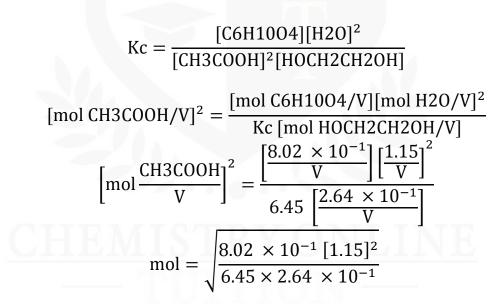
Dr. Ashar Rana

(3)

(c)

$$2CH_3COOH(1) + HOCH_2CH_2OH(1) \rightleftharpoons C_6H_{10}O_4(1) + 2H_2O(1)$$

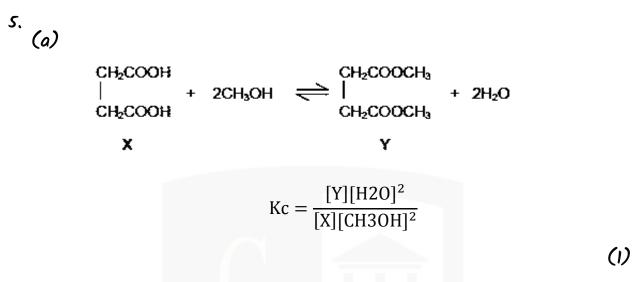
So,


$$Kc = \frac{[C6H1004][H20]^2}{[CH3C00H]^2[H0CH2CH20H]}$$

o 115770 010

(2)

(d)


Kc=6.45 Initial amounts: HOCH2CH2OH=0.264 mol C6H1004=0.802 mol H2O=1.15 mol

 $Mol CH_{3}COOH = 0.789$

I am Sorry !!!!!

(3)

(b)

The reaction between an acid (X) and methanol (CH₃OH) to form an ester (Y) and water (H₂O) is typically represented as:

X+CH₃OH≓Y+H₂O

So, at equilibrium:

Amount of acid X = 0.32 mol (initial) - 0.26 mol (consumed) = 0.06 mol

Amount of methanol (CH₃OH) at equilibrium: 0.32 mol Amount of water (H₂O) at equilibrium: 0.84-0.32=0.52 mol

(c)

 $\mathrm{Kc} = \frac{0.26 \times 0.52^2}{0.06 \times 0.32^2}$

No units as moles of reactants are equal to products.

(3)

(3)

am Sorry !!!!!

(d) If the reaction is carried out at a lower temperature Kc will increase

 (\mathbf{I})

6. (a)

$$C_2H_5OH(g) + H_2O(g) \Rightarrow 2CO(g) + 4H_2(g)$$

The expression for Kc for this reaction is: $Kc = \frac{[CO]^{2} [H2]^{4}}{[H2O][C2H5OH]}$ Units: mol⁴ dm⁻¹

(2)

(b)

Given:

- Volume of the container = $750 \text{ cm}^3 = 0.75 \text{ L}$ (since $1 \text{ L} = 1000 \text{ cm}^3$)
- C₂H₅OH(g): 0.0750 mol / 0.75 L = 0.100 M H₂O(g): 0.156 mol / 0.75 L = 0.208 M
- CO(g): 0.110 mol / 0.75 L = 0.147 M
- $H_2(q): 0.220 \text{ mol} / 0.75 L = 0.293 \text{ M}$

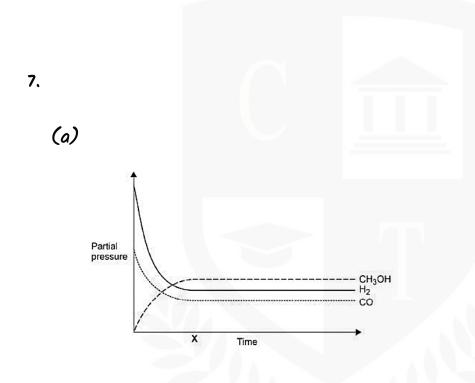
$$Kc = \frac{[CO]^{2} [H2]^{4}}{[H2O][C2H5OH]}$$
$$Kc = \frac{[0.147]^{2} [0.293]^{4}}{[0.208][0.100]}$$

 $KC = 7.66 \times 10^{-3}$

(3)

(c)

Equilibrium Yield of Hydrogen :


- Yield would decrease.
- **Explanation**:
- Effect on Equilibrium Position:

Equilibrium position shifts to the left/in the direction of the reverse reaction. As movement occurs to oppose/in response to the increase in pressure/reduce pressure. **Regarding Moles/Molecules of Gases :**

Fewer moles/molecules of gas on the left-hand side compared to the right-hand side. Specifically, 2 moles/molecules of gas on the left-hand side and 6 moles/molecules of gas on the right-hand side.

Effect on Kc :

- No effect on Kc
- **Explanation:** Kc remains constant as it's determined solely by the concentrations of products and reactants at equilibrium, unaffected by changes in pressure.

(4)

(1)

(b)

Total moles at equilibrium = Moles of H₂ + Moles of CO Total moles at equilibrium = 0.24 + 0.23 Total moles at equilibrium = 0.47

At equilibrium, the moles of hydrogen (H_2) are 0.24, and the moles of carbon monoxide (CO) are 0.23, resulting in a total of 0.47 moles in the system.

Equilibrium moles of hydrogen :

n(H₂) at equilibrium = 0.24 mol
 Total number of moles at equilibrium :

• Total moles = 0.47 mol

Mole fraction of hydrogen :

• Mole fraction of H_2

= n(H₂)/Total number of moles
Mole fraction of H₂= 0.24 mol/0.47 mol
Mole fraction of H₂ = 0.5106
Partial pressure of hydrogen : Partial pressure of H₂ = Mole fraction of H₂ × Total pressure
= 0.5106 × 1.04 × 10⁴ kPa
= 5310 kPa

(4)

(c)

Given the balanced equation:

 $CO(g)+2H_2(g) \rightleftharpoons CH_3OH$

 $x_p = \frac{\text{(partial pressure of CH30H)}}{(\text{partial pressure of CO}) \times (\text{partial pressure of H2})^2}$

Units: Pa⁻² or kPa⁻²

(2)

(d)

Adding more carbon monoxide (CO) will cause the partial pressure of methanol (CH $_3$ OH) to increase as the equilibrium shifts to produce more methanol. However, the value of the equilibrium constant (Kp) remains unchanged at the specified temperature.

(2)

(e)

The addition of a catalyst does not alter the value of the equilibrium constant (Kp) as it affects the rates of the forward and reverse reactions equally without changing the position of the equilibrium.

(2)

8.

(a) Initially: NO=1.50mol Cl₂=1.00mol NOCI formed at equilibrium =0.350 mol The change in moles of NO (x) is equal to the moles of NOCI formed, which is 0.350 mol So, x=0.350mol (moles of NO consumed/converted to NOCl).

This means that at equilibrium: Moles of NO =1.50mol-x=1.50mol-0.350mol=1.15mol Moles of Cl₂ =1.00mol-2x =1.00mol-(0.350mol/2) =0.825mol

(2)

 (\mathbf{I})

 $\mathcal{K}c = \frac{[\text{NOCI}]^2}{[\text{CI}][\text{NO}]^2}$

(c)

(b)

Given: $Kc=1.32 \times 10^{-2} mol^{-1} dm^{3}$ Moles of NO = 0.850 mol Moles of Cl₂ = 0.458 mol Volume of flask = 800 cm³ $Kc = \frac{[NOCI]^{2}}{[CI][NO]^{2}}$ $1.32 \times 10^{-2} = \frac{[NOCI]^{2}}{[0.85/800][0.458/800]^{2}}$ $[NOCI]^{2} = 8.53 \times 10^{-3} mol^{2} dm^{-6}$ $[NOCI] = \sqrt{8.53 \times 10^{-3}}$ $[NOCI] = 0.0924 mol dm^{-3}$ Volume = 800 cm³ = 0.800 dm³ $n(NOCI) = 0.0924 \times 0.800 = 0.0739 mol$

I am Sorry !!!!!

(4)

9. (A)

(Total I mark)

10.

(2)

(b)

$$Kc = \frac{[Z]}{[X][Y]^2}$$
$$[Y]^2 = \frac{[Z]}{Kc[X]}$$
$$\sqrt{[Y]^2} = \sqrt{\frac{[Z]}{Kc[X]}}$$
$$\sqrt{\frac{0.35}{2.9 \times 0.4}} = 0.5498$$

0.55mol dm-3

(3)

(c)


The addition of Y(aq) would cause the equilibrium to shift to the right, leading to a darker or more orange color in the mixture. This shift occurs to counteract the increase in Y(aq) concentration by favoring the formation of more Z(aq).

(3)

(d) If the student warmed the equilibrium mixture the orange colour would fade.

()

🕀 www.chemistryonlinetuition.com 🛛 🖂 asherrana@chemistryonlinetuition.com

- Founder & CEO of Chemistry Online Tuition Ltd.
- · Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK