

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY
 pHYSICAL CHEMISTRY

Chemical Equilibria - 1

1. (A)
2. (D)
3.

(a)

High pressure favors the side with fewer gas molecules, which in this case is the formation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$.
Low temperature benefits the exothermic forward reaction. Both conditions enhance the yield of methanol by pushing the equilibrium towards its production.

The actual conditions used in the chemical industry might be different from those mentioned above as it can be too expensive to use a high pressure or could be too slow to use a low temperature.
4.
(a)

Structural formula for the diester $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$

(b)

Amount in the mixture / mol					
	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	
At the start	0.470	0.205	0	0	
At equilibrium	0.180	0.06	0.145	0.29	

(c)
$2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ so,

$$
\mathrm{Kc}=\frac{[\mathrm{C} 6 \mathrm{H} 10 \mathrm{O} 4][\mathrm{H} 2 \mathrm{O}]^{2}}{[\mathrm{CH} 3 \mathrm{COOH}]^{2}[\mathrm{HOCH} 2 \mathrm{CH} 2 \mathrm{OH}]}
$$

(d)
$K c=6.45$
Initial amounts:

$$
\begin{aligned}
& \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}=0.264 \mathrm{~mol} \\
& \mathrm{C}_{6} \mathrm{H}_{1} \mathrm{O}_{4}=0.802 \mathrm{~mol} \\
& \mathrm{H}_{2} \mathrm{O}=1.15 \mathrm{~mol}
\end{aligned}
$$

$$
\mathrm{Kc}=\frac{[\mathrm{C} 6 \mathrm{H} 10 \mathrm{O} 4][\mathrm{H} 2 \mathrm{O}]^{2}}{[\mathrm{CH} 3 \mathrm{COOH}]^{2}[\mathrm{HOCH} 2 \mathrm{CH} 2 \mathrm{OH}]}
$$

$$
[\mathrm{mol} \mathrm{CH} 3 \mathrm{COOH} / \mathrm{V}]^{2}=\frac{[\mathrm{mol} \mathrm{C} 6 \mathrm{H} 1004 / \mathrm{V}][\mathrm{mol} \mathrm{H} 2 \mathrm{O} / \mathrm{V}]^{2}}{\mathrm{Kc}[\mathrm{~mol} \mathrm{HOCH} 2 \mathrm{CH} 2 \mathrm{OH} / \mathrm{V}]}
$$

$$
\left[\mathrm{mol} \frac{\mathrm{CH} 3 \mathrm{COOH}}{\mathrm{~V}}\right]^{2}=\frac{\left[\frac{8.02 \times 10^{-1}}{\mathrm{~V}}\right]\left[\frac{1.15}{\mathrm{~V}}\right]^{2}}{6.45\left[\frac{2.64 \times 10^{-1}}{\mathrm{~V}}\right]}
$$

$$
\mathrm{mol}=\sqrt{\frac{8.02 \times 10^{-1}[1.15]^{2}}{6.45 \times 2.64 \times 10^{-1}}}
$$

$\mathrm{Mol} \mathrm{CH} 3 \mathrm{COOH}=0.789$
5.
(a)

$$
\mathrm{Kc}=\frac{[\mathrm{Y}][\mathrm{H} 2 \mathrm{O}]^{2}}{[\mathrm{X}][\mathrm{CH} 3 \mathrm{OH}]^{2}}
$$

(1)
(b)

The reaction between an acid (X) and methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ to form an ester (y) and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is typically represented as:
$\mathrm{X}+\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons \mathrm{Y}+\mathrm{H}_{2} \mathrm{O}$
So, at equilibrium:
Amount of acid $x=0.32 \mathrm{~mol}$ (initial) -0.26 mol (consumed) $=0.06 \mathrm{~mol}$
Amount of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ at equilibrium: 0.32 mol
Amount of water ($\mathrm{H}_{2} \mathrm{O}$) at equilibrium: $0.84-0.32=0.52 \mathrm{~mol}$
(c)

$$
K c=\frac{0.26 \times 0.52^{2}}{0.06 \times 0.32^{2}}
$$

No units as moles of reactants are equal to products.
(d)

If the reaction is carried out at a lower temperature Kc will increase
6.
(a)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

The expression for $K c$ for this reaction is:

$$
K C=\frac{[\mathrm{CO}]^{2}[\mathrm{H} 2]^{4}}{[\mathrm{H} 2 \mathrm{O}][\mathrm{CC} 2 \mathrm{H} 5 \mathrm{OH}]}
$$

Units: mol $^{4} \mathrm{dm}^{-1}$
(b)

Given:

- Volume of the container $=750 \mathrm{~cm}^{3}=0.75 \mathrm{~L}$ (since $\left.1 \mathrm{~L}=1000 \mathrm{~cm}^{3}\right)$
- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g}): 0.0750 \mathrm{~mol} / 0.75 \mathrm{~L}=0.100 \mathrm{M}$
- $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}): 0.156 \mathrm{~mol} / 0.75 \mathrm{~L}=0.208 \mathrm{M}$
- $\mathrm{CO}(\mathrm{g}): 0.110 \mathrm{~mol} / 0.75 \mathrm{~L}=0.147 \mathrm{M}$
- $\mathrm{H}_{2}(\mathrm{~g}): 0.220 \mathrm{~mol} / 0.75 \mathrm{~L}=0.293 \mathrm{M}$
$K C=\frac{[\mathrm{CO}]^{2}[\mathrm{H} 2]^{4}}{[\mathrm{H} 2 \mathrm{O}][\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}]}$
$K_{C}=\frac{[0.147]^{2}[0.293]^{4}}{[0.208][0.100]}$
$K c=7.66 \times 10^{-3}$
(c)

Equilibrium Yield of Hydrogen :

- Yield would decrease.
- Explanation:

Effect on Equilibrium Position:
Equilibrium position shifts to the left/in the direction of the reverse reaction. As movement occurs to oppose/in response to the increase in pressure/reduce pressure.
Regarding Moles/Molecules of Gases :

Fewer moles/molecules of gas on the left-hand side compared to the right-hand side. Specifically, 2 moles/molecules of gas on the lefthand side and 6 moles/molecules of gas on the right-hand side.

Effect on Kc:

- No effect on Kc
- Explanation: Kc remains constant as it's determined solely by the concentrations of products and reactants at equilibrium, unaffected by changes in pressure.

7.

(a)

(b)

Total moles at equilibrium $=$ Moles of $\mathrm{H}_{2}+$ Moles of CO
Total moles at equilibrium $=0.24+0.23$
Total moles at equilibrium $=0.47$
At equilibrium, the moles of hydrogen $\left(\mathrm{H}_{2}\right)$ are 0.24 , and the moles of carbon monoxide (CO) are 0.23, resulting in a total of 0.47 moles in the system.

Equilibrium moles of hydrogen :

- $n\left(\mathrm{H}_{2}\right)$ at equilibrium $=0.24 \mathrm{~mol}$

Total number of moles at equilibrium :

- Total moles $=0.47 \mathrm{~mol}$

Mole fraction of hydrogen :

- Mole fraction of H_{2}
$=n\left(\mathrm{H}_{2}\right) /$ Total number of moles
- Mole fraction of $\mathrm{H}_{2}=0.24 \mathrm{~mol} / 0.47 \mathrm{~mol}$
- Mole fraction of $\mathrm{H}_{2}=0.5106$

Partial pressure of hydrogen:
Partial pressure of $\mathrm{H}_{2}=$ Mole fraction of $\mathrm{H}_{2} \times$ Total pressure
$=0.5106 \times 1.04 \times 10^{4} \mathrm{kPa}$
$=5310 \mathrm{kPa}$

Given the balanced equation:
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}$
$K p=\frac{\text { (partial pressure of } \mathrm{CH} 3 \mathrm{OH})}{(\text { partial pressure of } \mathrm{CO}) \times(\text { partial pressure of } \mathrm{H} 2)^{2}}$
Units: Pa^{-2} or kPa^{-2}
(d)

Adding more carbon monoxide (CO) will cause the partial pressure of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ to increase as the equilibrium shifts to produce more methanol. However, the value of the equilibrium constant (Kp) remains unchanged at the specified temperature.
(e)

The addition of a catalyst does not alter the value of the equilibrium constant (Kp) as it affects the rates of the forward and reverse reactions equally without changing the position of the equilibrium.
8.
(a)

Initially:
$N O=1.50 \mathrm{~mol}$
$\mathrm{Cl}_{2}=1.00 \mathrm{~mol}$
NOCl formed at equilibrium $=0.350 \mathrm{~mol}$
The change in moles of NO (x) is equal to the moles of NOCI formed, which is 0.350 mol

So,
$x=0.350 \mathrm{~mol}$ (moles of NO consumed/converted to NOC1).
This means that at equilibrium:
Moles of NO
$=1.50 \mathrm{~mol}-x=1.50 \mathrm{~mol}-0.350 \mathrm{~mol}=1.15 \mathrm{~mol}$
Moles of Cl_{2}
$=1.00 \mathrm{~mol}-2 x$
$=1.00 \mathrm{~mol}-(0.350 \mathrm{~mol} / 2)$
$=0.825 \mathrm{~mol}$
(b)

$$
K C=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{Cl}][\mathrm{NO}]^{2}}
$$

(c)

Given:

$$
K c=1.32 \times 10^{-2} \mathrm{~mol}^{-1} \mathrm{dm}^{3}
$$

Moles of NO $=0.850 \mathrm{~mol}$
Moles of $\mathrm{Cl}_{2}=0.458 \mathrm{~mol}$
Volume of flask $=800 \mathrm{~cm}^{3}$

$$
K C=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{Cl}][\mathrm{NO}]^{2}}
$$

$1.32 \times 10^{-2}=\frac{[\mathrm{NOCl}]^{2}}{[0.85 / 800][0.458 / 800]^{2}}$
$[\mathrm{NOCl}]^{2}=8.53 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
$[\mathrm{NOCl}]=\sqrt{8.53 \times 10^{-3}}$
$[\mathrm{NOCl}]=0.0924 \mathrm{~mol} \mathrm{dm}^{-3}$
Volume $=800 \mathrm{~cm}^{3}=0.800 \mathrm{dm}^{3}$
$n($ NOCl $)=0.0924 \times 0.800=0.0739 \mathrm{~mol}$
9. (A)
10.
(a)

At equilibrium:
Moles of x (aq) remaining
$=$ Initial moles of $x(a q)$ - Moles of $x(a q)$ reacted Moles of $x(a q)$ remaining
$=0.50 \mathrm{~mol}-0.20 \mathrm{~mol}=0.30 \mathrm{~mol}$
Moles of y (aq) remaining
$=$ Initial moles of $y(a q)$ - Moles of $y(a q)$ reacted Moles of $y(a q)$ remaining
$=0.50 \mathrm{~mol}-(2 \times 0.20)=0.10 \mathrm{~mol}$
(b)

$$
\begin{gathered}
\mathrm{Kc}=\frac{[\mathrm{Z}]}{[\mathrm{X}][\mathrm{Y}]^{2}} \\
{[\mathrm{Y}]^{2}=\frac{[\mathrm{Z}]}{\mathrm{Kc}[\mathrm{X}]}} \\
\sqrt{[\mathrm{Y}]^{2}}=\sqrt{\frac{[\mathrm{Z}]}{\mathrm{Kc}[\mathrm{X}]}} \\
\sqrt{\frac{0.35}{2.9 \times 0.4}}=0.5498
\end{gathered}
$$

$$
0.55 \mathrm{~mol} \mathrm{dm}^{-3}
$$

(c)

The addition of $\mathrm{y}(\mathrm{aq})$ would cause the equilibrium to shift to the right, leading to a darker or more orange color in the mixture. This shift occurs to counteract the increase in Y (aq) concentration by favoring the formation of more 2 (aq).
(d)

If the student warmed the equilibrium mixture the orange colour would fade.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

