

CHEMISTRY ONLINE

- TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

CHEMISTRY

Physical Chemistry
TOPIC:

ENERGETICS

PAPER TYPE:

SOLUTION - 2
TOTAL QUESTIONS 10

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Energetics - 2

I.
(a)

Experimental values can be added to table (only) given after experiment:

Temp/ ${ }^{\circ} \mathrm{C}$		Mass $/ \mathrm{g}$	
Initial		Burner before	
Final		Burner after	
ΔT		(Mass heptane burned)	

(2)
(b)

Following are two disadvantages of using a glass beaker on a tripod and gauze
Poor Heat Conductivity: Glass has lower heat conductivity compared to copper.
Reduced Heat Transfer Efficiency: Tripod and gauze setup might hinder efficient heat transfer.
(c)

Two reasons for less enthalpy of combustion from this experiment :
Heat loss to surroundings or calorimeter: Loss of heat to the surroundings or the calorimeter can lower the measured enthalpy of combustion. incomplete combustion: If the fuel doesn't completely react with oxygen, it leads to less energy released, resulting in a lower observed enthalpy of combustion.
(d)

Using a wind shield to reduce heat loss would improve the accuracy of the obtained enthalpy value.
2. (D)
(1)
3. (D)
4. (A)
S.
(a)

Given:
Volume of ethanoic acid solution (V) $=25 \mathrm{~cm}^{3}=25 \times 10^{-3} \mathrm{dm}^{3}$
Molarity of ethanoic acid solution $=2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
Moles of ethanoic acid $=$ Molarity \times Volume
Moles of ethanoic acid $=2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} \times 25 \times 10^{-3} \mathrm{dm}^{3}$
$=0.05$ moles
Moles of sodium hydroxide $=0.05$ moles (since equal volumes and molarities are used)
The enthalpy change (ΔH) given is $-56.1 \mathrm{~kJ} \mathrm{~mol}^{-}$-
$\Delta H=-56.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=-56,100 \mathrm{~J} \mathrm{~mol}^{-1}$
So the heat released will be:
Heat released $=\Delta H \times$ moles
Heat released $=56,100 \mathrm{~J} \mathrm{~mol}^{-} \times 0.05 \mathrm{~mol}$
$=2,805 \mathrm{~J}$
$\Delta T=$ Heat released / m.c
$\Delta T=2,805 \mathrm{~J} /\left(50 \mathrm{~g} \times 4.18 \mathrm{JK} \mathrm{K}^{-1} \mathrm{~g}^{-1}\right)$
$=13.4^{\circ} \mathrm{C}$

17.2 value from graph line at 4 minutes) $\pm 0.2\left({ }^{\circ} \mathrm{C}\right)$

6. (B)
7. (C)
8.

(a)

$$
\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}+8 \mathrm{~B}_{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

(b)

Given:
Temperature rise $(\Delta T)=20.1^{\circ} \mathrm{C}$
specific heat capacity of water (c) $=4.18 \mathrm{~J} / 9^{\circ} \mathrm{C}$
Mass of water (m) $=50.0 \mathrm{~g}$
Mass of alcohol burned $=0.54 \mathrm{~g}$
Molar mass of alcohol $=100.0 \mathrm{~g} / \mathrm{mol}$
Using the formula $q=m c \Delta T$ to find the heat absorbed by water:
$q=m c \Delta T$
$q=50.0 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 20.1^{\circ} \mathrm{C}$
$q=4201 \mathrm{~J}$
Calculate the number of moles of alcohol burned:
Moles of alcohol burned (n) = Mass of alcohol burned / Molar mass of alcohol
$n=0.54 \mathrm{~g} / 100.0 \mathrm{~g} / \mathrm{mol}$
$n=0.0054 \mathrm{~mol}$
Calculate the heat change per mole of alcohol:
Heat change per mole (ΔH)
$=\Delta H=4201 \mathrm{~J} / 0.0054 \mathrm{~mol}$
$\Delta H=-778 \mathrm{~kJ} / \mathrm{mol}$ or $-778,000 \mathrm{~J} / \mathrm{mol}$
(c)

The experimental value obtained may be less negative than the reference due to factors like heat loss, incomplete combustion, alcohol evaporation, or unaccounted heat transfer to the beaker.
(d)

Water has a known density of $1.0 \mathrm{~g} / \mathrm{cm}^{3}$. Hence, a volume of $50.0 \mathrm{~cm}^{3}$ could be measured out to correspond to a mass of 50.0 g of water.
9. (B)
10.
(a)

Enthalpy change is termed as heat (energy) change at constant pressure. It is denoted as ΔH
(b)

The bond energies are as follows:
$\mathrm{C}-\mathrm{H}: 412 \mathrm{~kJ} / \mathrm{mol}$
$C=0: 743 \mathrm{~kJ} / \mathrm{mol}$
O-H: $463 \mathrm{~kJ} / \mathrm{mol}$
$0=0: 496 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=+41 \mathrm{~kJ} / \mathrm{mol}$
Using the bond energies provided, the given reaction can be expressed in terms of bond energies:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-2046 \mathrm{~kJ} \mathrm{~mol}^{-1}$
For this reaction

```
(Broken) \(2(\mathrm{C}-\mathrm{C})+8(\mathrm{C}-\mathrm{H})+5(\mathrm{O}=\mathrm{O})=5776+2(\mathrm{C}-\mathrm{C})\)
(Made) \(6(C=0)+8(O-H)=8162\)
```

Now, including the vaporization of water $\left(\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)$, we use 4×41 $\mathrm{kJ} / \mathrm{mol}$
$2(c-c)$
$=6(C=0)+8(0-H)+4(41)-2046-8(C-H)-5(0=0)$
$=6(743)+8(463)+4(41)-2046-8(412)-5(496)$
$2(c-c)=504$
(c-c) $=504 / 2$
$=252 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c)

The value given for the $0=0$ bond enthalpy is not a mean value because Oxygen $/ \mathrm{O}_{2}$ is the only substance that has $\mathrm{O}=0$ bond

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com Address: 210-Old Brompton Road, London SW5 OBS, UK

