

Phone: +442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

CHEMISTRY

WORK SHEET

ACIDS \& BASES

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Acids and Bases - Lowry Concept

The Bronsted-Lowry theory, which is a fundamental concept in chemistry, defines an

- Acid is a substance that donates a proton ($\mathrm{H}+$)
- Base is a substance that accepts a proton ($\mathrm{H}+$).

An acid-base reaction involves the transfer of a proton from the acid to the base. This transfer of the proton results in the formation of a new acid and a new base.

Please identify the acids and bases mentioned in the table provided below.

Exercise 1

	Acid	Base
i) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{+}$		
ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$		
iii) $\mathrm{HBr}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$		
iv) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{3}^{+}+\mathrm{CH}_{3} \mathrm{OH}_{2}$		
v) $\mathrm{NH}_{3}+\mathrm{HCL} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$		
vi) $\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}$		
vii) $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$		
viii) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}^{*}$		

Monoprotic \& Diprotic acids

Monoprotic acids are acids that release one proton $(\mathrm{H}+$) per molecule.
Examples include hydrochloric acid (HCl), nitric acid $\left(\mathrm{HNO}_{3}\right)$, and ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

Diprotic acid is an acid that releases two hydrogen ions per molecule.
For instance, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid) and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (ethanedioic acid) are examples of diprotic acids.

Exercise 2

Moles of Acid	Moles Of H^{+}
3 moles of HNO_{3}	
2 moles of HCL	
4 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$	
0.3 moles of HNO_{3}	
0.3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$	

Calculating PH and $[\mathrm{H}+]$ ions.

It is a scale used to specify the acidity or basicity of an aqueous solution.
The formula to calculate the PH is:
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
If the pH is known and $[\mathrm{H}+]$ needs to be calculated, use the following formula,
$[\mathrm{H}+]=1 \times 10^{-\mathrm{ph}}$

Exercise 3

$\left[\mathrm{H}^{+}\right]$	0.00300		2.50		$1.25 * 10^{-3}$		$3.5^{*} 10^{-12}$		
pH		1.75		2.20		11.40		2.55	-0.50

Calculate the pH of Strong Acids

Use the formula mentioned above to calculate the pH of strong acids. Remember that strong acids are going to dissociate fully.

Example:

Calculate the pH of $0.700 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HClO}_{3}$?
As it is a monoprotic strong acid, H^{+}concentration would be the same as the acid's.
$[\mathrm{H}+]=0.7 \mathrm{~mol} / \mathrm{dm}^{3}$
$\mathrm{pH}=-\log [0.7]$
$=0.15$

Exercise 4(a)

Calculate the pH of the following solutions

a) $0.7 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCLO}_{4}$
b) $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$
c) $0.24 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HBr}$
d) $1.75 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{3}$
e) $0.45 \mathrm{~mol} \mathrm{dm}^{3} \mathrm{HI}$

Example:

[HNO] with pH 1.20?
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-1.2}$
$=0.63 \mathrm{~mol} \mathrm{dm}^{-3}$

Exercise 4(b)

Calculate the concentration of the following acids.

a) HBr with pH 2.55
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ with pH 1.10
c) HCLO_{4} with pH 2.25
d) HCl with pH 1.97
e) HClO_{3} with pH 3.66
f) $\mathrm{H}_{2} \mathrm{SO}_{4}$ with $\mathrm{pH}-0.50$

PH calculation of diluted solution of a strong acid

Calculate the pH of the solution formed when $200 \mathrm{~cm}^{3}$ of water is added to 150 cm^{3} of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
$\left[\mathrm{H}^{+}\right]$in original HCl solution $=0.200$
$\left[\mathrm{H}^{+}\right]$in diluted solution $=0.200 \times \frac{\text { old volume }}{\text { new volume }}=0.200 \times \frac{150}{350}=0.0857$
$\mathrm{pH}=-\log 0.0857=\underline{1.067}$

Exercise 4(c)

Calculate the pH of the solutions formed in the following way.

a) addition of $150 \mathrm{~cm}^{3}$ of water to $25 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HBr}$
b) addition of $250 \mathrm{~cm}^{3}$ of water to $120 \mathrm{~cm}^{3}$ of $0.300 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO} 3$
c) adding water to $110 \mathrm{~cm}^{3}$ of $4.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ to make $700 \mathrm{~cm}^{3}$ of solution
d) adding water to $25 \mathrm{~cm}^{3}$ of $1.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HClO}_{4}$ to make $650 \mathrm{~cm}^{3}$ of solution

Calculate the pH of the Solutions

Sometimes, you would be given concentration of acid in grams which needs to be converted to moles, and then you would be asked to calculate the pH .

Exercise 4(d)

Calculate the pH of the following solutions.
a) $20 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{HBr}$
b) $70 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.04 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
c) $140 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$
d) $100 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{HClO}_{4}$

Ionic Product of water

The Ionic Product of Water, also known as Kw, refers to the equilibrium constant of the self-ionization reaction of water.

In simpler terms, it is the reaction between two water molecules resulting in the formation of hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and hydroxide $\left(\mathrm{OH}^{-}\right)$ions.

The value of Kw always remains constant at $25^{\circ} \mathrm{C}$ and equals 1.0×10^{-14}.
Formula for the ionic product of water is,

$$
\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

Exercise 4(e)

Calculate the pH of water at 40.C given that $\mathrm{Kw}=2.916 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the pH of water at 30.C given that $\mathrm{Kw}=1.471 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the pH of water at 20.C given that $\mathrm{Kw}=0.681 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the pH of water at $50 . \mathrm{C}$ given that $\mathrm{Kw}=5.476 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the pH of water at 100.C given that $\mathrm{Kw}=51.3 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Calculate the PH of Strong Bases

- Calculate the pH of a strong base pH of $0.500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$?
$[\mathrm{OH}-]=0.500$
$[\mathrm{H}+]=\frac{\mathrm{Kw}}{[\mathrm{OH}-]}=\frac{10^{-14}}{0.200}=2 \times 10^{-14}$
$\mathrm{pH}=-\log [\mathrm{H}+]=-\log \left(2 \times 10^{-14}\right)=13.67$

Exercise 4(f)

Calculate the concentration of the following bases.

a) KOH with pH 13.20
b) $\mathrm{Ca}(\mathrm{OH})_{2}$ with pH 12.90
c) NaOH with pH 11.20
d) CsOH with pH 10.88
e) LiOH with pH 12.13

- Calculate the concentration of base in the following solutions.

NaOH with a pH of $11.7 ?$
$[\mathrm{H}+]=10^{-\mathrm{pH}}=10^{-11.70}=1.995 \times 10^{-12}$
$[\mathrm{OH}-]=\mathrm{Kw}=\frac{10^{-14}}{95}=5 \times 10^{-3}$
$[\mathrm{H}+] \quad 1.995 \times 10^{-12}$
$[\mathrm{KOH}]=5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

Exercise 4(g)

Calculate the pH of the following solutions.

a) $40 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{LiOH}$
b) $150 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{NaOH}$
c) $175 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$
d) $225 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Ca}(\mathrm{OH})_{2}$
e) $30 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Rb}(\mathrm{OH})_{2}$

PH calculation of diluted solution of a strong base

Calculate the pH of the solution formed when $150 \mathrm{~cm}^{3}$ of water is added to 100 cm^{3} of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.
$\left[\mathrm{OH}^{-}\right]$in original NaOH solution $=0.100$
$\left[\mathrm{OH}^{-}\right]$in diluted solution $=0.100 \times \frac{\text { old volume }}{\text { new volume }}=0.200 \times \frac{100}{250}=0.08$
$[\mathrm{H}+]=\frac{\mathrm{Kw}}{[\mathrm{OH}-]}=\frac{10^{-14}}{0.08}=1.25 \times 10^{-13}$
$\mathrm{pH}=-\log \left(1.25 \times 10^{-13}\right)=12.9$

Exercise 4(h)

Calculate the pH of the solutions formed in the following way.
a) addition of $200 \mathrm{~cm}^{3}$ of water to $35 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$
b) addition of $45 \mathrm{~cm}^{3}$ of water to $200 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ca}(\mathrm{OH}) 2$
c) adding water to $400 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{LiOH}$ to make $1.5 \mathrm{dm}^{3}$ of solution.
d) addition of $175 \mathrm{~cm}^{3}$ of water to $65 \mathrm{~cm}^{3}$ of $0.250 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CsOH}$
e) addition of $270 \mathrm{~cm}^{3}$ of water to $75 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH}) 2$

Calculate the pH of the solutions

Sometimes, you would be given concentration in grams, which need to be converted to moles and then you would be asked to calculate the pH .

Exercise 4(i)

Calculate the pH of the following solutions.

a) $40 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{LiOH}$
b) $150 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{NaOH}$
c) $175 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$
d) $225 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Ca}(\mathrm{OH})_{2}$
e) $30 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Rb}(\mathrm{OH})_{2}$

Exam Questions

Which is the concentration of $\mathrm{NaOH}(\mathrm{aq})$, in $\mathrm{mol} \mathrm{dm}^{-3}$, that has $\mathrm{pH}=14.30$?

$$
K_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \text { at } 25^{\circ} \mathrm{C}
$$

A -1.16
B 5.01×10^{-15} \square
C 2.00×10^{14} \square
D 2.00 \square

Give the meaning of the term Brønsted-Lowry acid.

Table 1 shows how $K_{\text {w }}$ varies with temperature.
Table 1

Temperature $/$ ${ }^{\circ} \mathrm{C}$	$\mathrm{K}_{\mathrm{w}} / \mathrm{mol}^{2} \mathbf{~ d m}^{-6}$
10	2.93×10^{-15}
20	6.81×10^{-15}
25	1.00×10^{-14}
30	1.47×10^{-14}
50	5.48×10^{-14}

Give the expression for pH .
Calculate the pH of pure water at $50^{\circ} \mathrm{C}$ Give your answer to 2 decimal places.

Explain why water is neutral at $50^{\circ} \mathrm{C}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

