Respiration

Question Paper 5

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Energy and respiration
Sub Topic	Respiration
Booklet	Theory
Paper Type	Question Paper 5

Time Allowed: 70 minutes

Score : /58

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Fig. 1.1 shows the molecular structure of ATP.

Fig. 1.1

(a)	Describe the main structural leatures of the molecule.
	[3]
(b)	Explain how ATP is able to transfer energy in cells.
	[3]

(c)	State how ATP is synthesized in mitochondria.
	[4]
	[Total: 10]

2 Fig. 3.1 is a diagram of a section through the proximal convoluted tubule of a kidney nephron showing details of cell structure, as seen with the electron microscope.

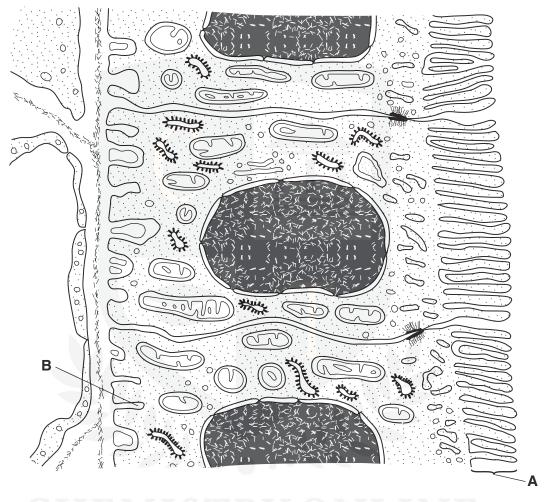


Fig. 3.1

(a)	Name	the	structures	Δ	and	B
(u)	Name	uic	Siluciales	\boldsymbol{n}	ana	┏.

Α	 	 	

(b)	Explain three ways in which the cells of the proximal convoluted tubule are adapted for selective reabsorption.
	1
	2
	3.
	[3]
(c)	Describe the mechanism of glucose reabsorption into the blood from the lumen of the proximal convoluted tubule of the kidney.
	[3]
(d)	Outline, in terms of water potential, how water is reabsorbed by the cells of the proximal convoluted tubule.
	[2]
	[Total: 10]

3 (a) Fig. 5.1 shows the structure of an ATP molecule.

Fig. 5.1

State two ways in which the structure of ATP differs from the structure of an adenine nucleotide in a DNA molecule.
1
2
[2]
In respiration, energy from various substrates is used to synthesise ATP.
(i) Explain why less ATP can be synthesised from the same mass of glucose in anaerobic respiration than in aerobic respiration.
CHEMISTRY ONLINE

(b)

(ii)	Explain why more ATP can be synthesised in aerobic respiration from one gram of lipid than from one gram of glucose.
	[3]
	[Total: 8]

4 (a) The components of a molecule of ATP (adenosine triphosphate) are shown in Fig. 3.1.

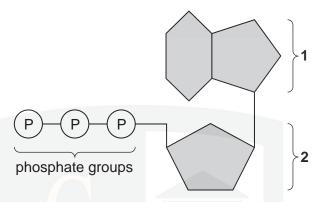


Fig. 3.1

With reference to Fig. 3.1, name components 1 and 2.

	1
	2 [2]
(b)	Describe the consequences for the cell of the following statements.
	 Each cell has only a very small quantity of ATP in it at any one time. The molecules, ATP, ADP (adenosine diphosphate) or AMP (adenosine monophosphate) rarely pass through the cell surface membrane.
	<u>CHEMISTRY ONLINE</u>

(c) Glucose is a respiratory substrate. Table 3.1 shows the yield of ATP from some other substrates.

Table 3.1

respiratory substrate	number of ATP molecules produced per mole of substrate
alanine (an amino acid)	15
glycogen	39
lactate	18
palmitic acid (a fatty acid)	129

(i)	Explain the different yields of ATP from glycogen and palmitic acid.
	[2]
(ii)	Describe the circumstances in which alanine and lactate are used as respiratory substrates.
	alanine
	lactate
	[2]
	[Total: 8]

tory ate		Table 3.1 released / kJ	mass of water produced / g
ate	per g of		
ate			produced / g
drate		per dm ³ of oxygen consumed	per g of substrate
	17.4	20.9	0.56
	39.3	19.6	1.07
V/I	17.8	18.6	0.45
ostrates.		ferences in energy releas	

6 (a) Fig. 8.1 is an electronmicrograph of a section through a mitochondrion.

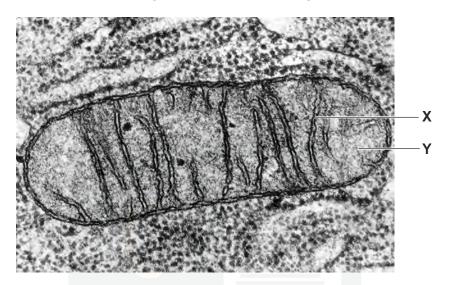


Fig. 8.1

Name X and Y.

X

Υ

(b) Fig. 8.2 outlines the early stages of respiration.

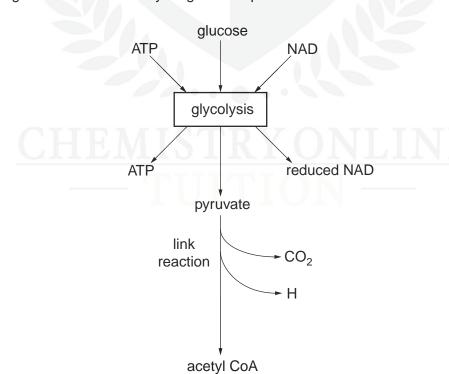


Fig. 8.2

[2]

Wit	h reference to Fig. 8.2:
(i)	explain why ATP is needed at the start of glycolysis
	[1]
(ii)	state the role of NAD in glycolysis
	[1]
(iii)	state how many molecules of ATP are produced from one molecule of glucose
	during glycolysis
	[1]
(iv)	name the two types of reaction that occur during the conversion of pyruvate to acetyl CoA in the link reaction
	1
	2[2]
(v/)	
(v)	name the location, in the mitochondrion, of the link reaction
	[1]
(vi)	describe what happens to the hydrogen released during the link reaction.
	[2]

(c)	Explain why ATP is regarded as the universal energy currency in organisms.
	[5
	[Total: 15

CHEMISTRY ONLINE
— TUITION —