## Respiration

## Mark Scheme 2

| Level      | International A Level  |
|------------|------------------------|
| Subject    | Biology                |
| Exam Board | CIE                    |
| Topic      | Energy and respiration |
| Sub Topic  | Respiration            |
| Booklet    | Theory                 |
| Paper Type | Mark Scheme 2          |

Time Allowed: 72 minutes

Score : /60

Percentage : /100

## **Grade Boundaries:**

| A*   | Α      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1 | (a (i)  | receptors/hypothalamus, detect change in blood temperature;      |            |
|---|---------|------------------------------------------------------------------|------------|
|   |         | brain;                                                           |            |
|   |         | (receptor/brain) sends impulses to effector;                     |            |
|   |         | effector carries out response / example of response;             |            |
|   |         | blood temperature returns to normal;                             |            |
|   |         | negative feedback;                                               | [max 4]    |
|   | (ii)    | larger SA: V ratio ;                                             |            |
|   |         | lose (relatively) more heat ;                                    |            |
|   |         | ref. more mitochondria to release heat energy;                   |            |
|   |         | cannot carry out behavioural actions to get warm;                |            |
|   |         | infants cannot shiver;                                           | [max 2]    |
|   | /b) /:) | A ATD complete a ATD complete a control of posticion and ATD and |            |
|   | (b) (i) |                                                                  |            |
|   |         | B – inner membrane / crista; I phospholipid bilayer              | [2]        |
|   | (ii)    | arrow going down from intermembrane space to matrix;             | [1]        |
|   | (iii)   | 1 and 3;                                                         | [1]        |
|   | (iv)    | water;                                                           | [1]        |
|   | (v)     | fatty acids; A lipid/fat/triglycerides                           | [1]        |
|   |         |                                                                  | [Total:12] |
|   |         |                                                                  |            |
|   |         |                                                                  |            |

| 2 | (a  | (i)  | <ol> <li>ATP is made, in the electron transport chain/by oxidative<br/>phosphorylation;</li> </ol>                                                                 |         |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   |     |      | 2. oxygen is the final electron acceptor;                                                                                                                          |         |
|   |     |      | 3. in the, inner membrane of the mitochondrion/cristae;                                                                                                            |         |
|   |     |      | 4. transfer of electron (between electron carriers) provides energy;                                                                                               |         |
|   |     |      | 5. energy used to pump hydrogen ions (into intermembrane space);                                                                                                   |         |
|   |     |      | 6. create proton gradient;                                                                                                                                         |         |
|   |     |      | <ol> <li>diffusion of hydrogen ions down their electrochemical gradient<br/>causes ATP to be synthesised;</li> </ol>                                               |         |
|   |     |      | 8. ref. chemiosmosis/ATP synthase/stalked particles;                                                                                                               |         |
|   |     |      | <ol> <li>idea that if less oxygen (consumed/available) then fewer electrons<br/>transferred along the chain;</li> </ol>                                            | [max 4] |
|   |     | (ii) | 1. at high temperatures, reactions/enzyme activity/metabolism, faster;                                                                                             |         |
|   |     |      | 2. because, molecules/enzymes/substrates, have more kinetic energy;                                                                                                |         |
|   |     |      | 3. more frequent collisions;                                                                                                                                       |         |
|   |     |      | <ol> <li>therefore, respiration/Krebs cycle/electron transport chain/production<br/>of reduced NAD, take place at a faster rate;</li> </ol>                        |         |
|   |     |      | 5. idea of increase in rate of anabolic reactions (requiring more ATP);                                                                                            | [max 3] |
|   | (b) | (i)  | 1. oxygen consumed = oxygen inhaled – oxygen exhaled;                                                                                                              |         |
|   |     |      | 2. measure oxygen consumption at rest (x) and after exercise stops (y);                                                                                            |         |
|   |     |      | 3. extra oxygen consumed/oxygen debt = y − x;                                                                                                                      |         |
|   |     |      | 4. measure mass of lizard;                                                                                                                                         | [max 2] |
|   |     | (ii) | 1. less (oxygen debt )(for Varanus); ora                                                                                                                           |         |
|   |     |      | 2. difference is greater at higher temperatures;                                                                                                                   |         |
|   |     |      | <ol> <li>any two comparative figures at one temperature including units;</li> <li>A 102.0 cm<sup>3</sup> O<sub>2</sub> kg<sup>-1</sup> at 30°C and 40°C</li> </ol> | [3]     |

- (iii) 1. Varanus uses, less anaerobic/more aerobic, respiration (when running);
  - 2. more ATP produced per glucose molecule;
  - 3. able to run for long ti
  - 4. good chance of catching pr ;

[max 3]

- (iv) assume Varanus throughout
  - 1. larger surface area, in lungs/for gas exchange;
  - 2. more oxygen absorbed into blood (per unit time)/faster rate of gas exchange;
  - 3. more oxygen supplied to muscles (so oxygen debt lower);

[max 2]

[Total: 17]



(a (i) inner membrane / crista(e); [1] (ii) (electron comes from) hydrogen (atom);  $\mathbf{R} \, \mathbf{H}^{\dagger} / \mathbf{H}_{2}$ 2. (from) reduced NAD / reduced FAD; 3. (from) dehydrogenation / oxidation, reactions; 4. (from substances in) Krebs cycle / link reaction / glycolysis; 5. in, matrix of mitochondrion / cytoplasm; [max 3] (iii) 1. final electron acceptor / accepts electron from last carrier; 2. so carrier can be reduced again; 3. so electrons can keep flowing (along ETC) / so ETC can continue to work; (oxygen) combines with H<sup>+</sup> to form water; [2 max] (b) 1. (when pump stops working), resting potential not maintained pump usually maintains the resting potential; 2. (during resting potential) membrane polarised positive charge outside (neurone) / negative charge inside (neurone) / -70mV inside neurone relative to outside / potential difference across membrane; 3. (when pump stops working), ions (only) move by diffusion; <sup>†</sup> into the neurone; 4. 5. outward diffusion of K<sup>+</sup> is limited / K<sup>+</sup> stay in neurone; ref. non voltage-gated channels; 6. 7. (eventually) inside of the neurone, becomes less negative / contains (relatively) more positive ions or there is a reduced potential difference across the membrane: [max 4] (ii) 1. voltage gated (calcium) channels open; (calcium ions move in) by diffusion / move down their concentration gradient; [2]

Dr. Asher Rana

- (c) (i) 1. Na<sup>+</sup>/K<sup>+</sup>, cannot move through membrane;
  - 2. so potential across membrane maintained even when pump stops / so membrane depolarisation does not happen;
  - 3. calcium ions cannot enter cell;
  - 4. so, (destructive) enzymes not activated;

[max 2]

- (ii) 1. gene (for protein channels), expressed less / switched off;
  - 2. transcription, reduced / stopped;
  - 3. AVP; e.g. reduced aerobic respiration / less ATP, for transcription

[max 2]

[Total: 16]



reduced, NAD / FAD; (a 1. 2. passed to ETC; 3. inner membrane / cristae; 4. hydrogen released (from reduced, NAD / FAD); R H<sub>2</sub> split into electrons and protons; 5. 6. electrons pass along, carriers / cytochromes; ref. energy gradient; 7. energ released pumps protons into intermembrane space; 9. proto gradient; 10. protons pass through (protein) channels; 11. ATP synthase / stalked particles; 12. (ATP produced from) ADP and inorganic phosphate; 13. electron transferred to oxygen; 14. addition of proton (to oxygen) to form water / (oxygen) reduced to water; [8 max] **(b)** 15. organisms need energy, to stay alive / for metabolism / AW; 16. ATP as, (universal) energy currency / described; 17. light energy for photosynthesis; A light dependent stage 18. light-dependent stage detail; 19. light-independent stage detail; 20. chemical energy; 21. for anabolic reactions; 22. named reaction; e.g. protein synthesis / starch formation 23. activation of glucose in glycolysis / described;

24. active transport;

- 25. detail; e.g. sodium potassium pump /movement against a concentration gradient
- 26. mechanical energy / movement;
- 27. detail; e.g. muscle contraction / spindle
- 28. temperature regulation;

29. A ; e.g. bioluminescence / electrical discharge

[7 max]

[Total: 15]

