Respiration

Mark Scheme 3

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Energy and respiration
Sub Topic	Respiration
Booklet	Theory
Paper Type	Mark Scheme 3

Time Allowed: 60 minutes

Score : /50

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	Act	ive transport or anabolic reactions
		1.	ATP provides energy (linked to either); ignore ref. to energy currency alone
		act	ive transport movement against concentration gradient ;
		3.	carrier / transport, protein (in membrane); ignore pump
		4.	binds to (specific) ion;
		5.	protein changes shape ;
		ana 6.	abolic reactions synthesis of complex substances from simpler ones ;
		7.	starch / cellulose / glycogen, from, monosaccharides / named monosaccharides / named sugar ;
		8.	glycosidic bonds;
		9.	lipid / triglyceride, from fatty acids and glycerol;
		10.	ester bonds;
		11.	polypeptides / proteins, from amino acids ;
		12.	peptide bonds ;
		13.	other named polymer from suitable monomer;
		14.	appropriate named bond ; 5 max
			[7 max
	(b)		neral reduced NAD produced in glycolysis; A glycolysis described
		16.	small amount of ATP produced in glycolysis;
		•	reast cells pyruvate converted to ethana
		18.	carbon dioxide released / decarboxylation ;
		19.	ethanal, reduced / accepts
		20.	by reduced NA
		21.	ethanol forme
			nammalian cells pyruvate converted to lactat
		23.	by reduced ;

24. in, liver / muscle, cell

25. AVP

26. e.g. reversible in mammal / irreversible in yeast / single step in mammal / more than 1 in yeast / reoxidised NAD allows glycolysis to continue / named enzyme

only award either mp19 or mp23

[8 max]

[Total: 15]

(ii) nitrate required for, amino acid / protein / nucleic acid, production in plants; A other relevant named N-containing biochemicals nitrogen (gas) not useable form for (most) plants; removal of nitrate slows / AW, growth of plants; A reduces crop yield A plants need nitrates for growth decreases fertility of soil / fertilisers need to be added to soil; [2] (b) (i) nitrification; [1] (ii) P. stutzeri / bacteria, can be (added to the water and) used to, remove nitrate / carry out denitrification; detail: e.g. use of filter bed ref. to leave for sufficient time to remove nitrates nitrogen escapes to air [2] (c) 1 air / oxygen, will not get into soil; lack of oxygen reduces uptake of ions by plants / AW; ref. saprobiotic bacteria and fungi / nitrifying bacteria / (some) nitrogen fixing bacteria, are aerobic: ref. reduced populations (of bacteria in mp 2); 4 5 example of effect on nitrogen cycle;; e.g. slower rate / AW, of decomposition / dec nitrogen fixation cannot occur (as rapidly) nitrification cannot occur / nitrate will not be produced / less nitrate produced (more) denitrification will occur crops / plants, will use up remaining nitrate; 7 ref. leaching of, nitrates / other nutrients, for growth or (only) low levels of nitrates / other 8 nutrients, for growth remain in soil; A ref. leaching reducing soil fertility 9 AVP; e.g. named example of another nutrient, with role will take time to, recover nitrate levels / resume nitrogen fixation; fertilisers (previously) applied washed away; [max 4]

2

(i) denitrification;

[1]

[Total: 10]

3 (a) active transport;

<u>ribose</u>; water;

hydrolysis; A dephosphorylation

heat;

[5]

(b) (i) (converted to) glycogen / lipid; (used in) glycolysis / respiration;

[1 max]

- (ii) anaerobic
 - 1. less ATP / only 2 ATP;
 - 2. per mol glucose;
 - lactate still contains energy / only glycolysis involved / stages other than glycolysis not involved;
 - 4. not sustainable / cannot go on indefinitely / AW;

[2 max]

(iii)

process	p location
glycolysis	cytoplasm / cytosol ;
link reaction	mitochondrial matrix;
Krebs cycle	mitochondrial matrix;
oxidative phosphorylation	inner mitochondrial membrane / cristae;

[4]

- (iv) 1. cannot pass through phospholipid bilayer;
 - 2. too big to fit through (glucose's) protein channel;
 - 3. no specific transport protein;
 - 4. AVP; e.g. used up as soon as it is made

[2 max]

(v) oxygen debt; [1]

[Total:15]

4 (a	(i)	decarboxylation;	[1]
	(ii)	dehydrogenation / oxidation;	[1]
	(iii)	substrate level phosphorylation;	[1]
(b	•	reduced NAD; A NADH etc. oxaloacetate;	[2]
(c	2. 3. 4. 5. 6. 7. 8. 9.	hydrogens split into protons and electrons; electrons pass along ETC; energy released used to pump protons; (from matrix) to intermembrane space; inner membrane impermeable to protons; proton gradient forms; protons move down gradient; through ATP, synthase / ATP synthetase; R ATP ase enzyme rotates; ATP produced;	[5 max]
			[Total: 10]

CHEMISTRY ONLINE — TIITION —