Respiration

Mark Scheme 5

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Energy and respiration
Sub Topic	Respiration
Booklet	Theory
Paper Type	Mark Scheme 5

Time Allowed: 70 minutes

Score : /58

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question **Marks** 1 (a) a nucleotide; with three phosphate groups; an organic / nitrogenous base / adenine; a pentose sugar / ribose; ref. ester linkages / covalent bonds; 3 max (b) synthesized from ADP and Pi; soluble molecule; diffuses rapidly / transported easily; on hydrolysis / removal of (third) phosphate; energy released / 30.5 kJ (mol⁻¹); ref.(idea) intermediary (between energy yielding and energy requiring reactions); 3 max (c) oxidative phosphorylation; NADH₂ to, cristae / inner membrane; oxidised to NAD; ref. transfer of electrons to electron carriers / ETC; H⁺ pumped into intermembrane space; ref. to H⁺ gradient; H⁺ (diffuses) through ATP synthase / stalked particle; results in ADP and P_i to ATP; ref. chemiosmosis; ref. substrate level phosphorylation; 4 max

Total: 10

	Ques	tion	Expected Answers	Marks
2	(a)	A B	microvilli / brush border ; invagination / infolding of membrane / basal channels ;	2
	(b)	many carrier diffusion tight ju tubule	channels / microvilli / brush border – increase surface area mitochondria – provide ATP for active transport; r proteins / cation pumps in csm – active uptake / facilitated on / co-transport; unctions – prevent migration of membrane proteins / separa fluid; pincocytosis – protein uptake;	
	(c)	create Na ⁺ er throug glucos	ctively transported (out of cell) into blood; es concentration gradient; nters cell by diffusion; gh cotransporter / symporter proteins; se cotransported / facilitated diffusion (from lumen to cells); se diffuses into blood capillaries;	3 max
	(d)	solute due to water	nal convoluted tubule cells have a low / more negative wate e potential ; o high concentration of salts / ions / glucose / Na ⁺ ; enters by osmosis ; water potential gradient (idea) ;	r / 2 max otal: 10
			10111011	- -

3	(a)	cor	ntain	s ribose (not deoxyribose) ;	
		has	s thre	ee phosphate groups (not one);	[2]
	(b)	(i)	ana 1 or	aerobic – accept ora for aerobic idea that glucose not completely, broken down/oxidised	
				only glycolysis occurs;	
			2	pyruvate/lactate/ethanol, still contains energy;	
			3	ETC stops;	
			4	(because) no oxygen to act as (final) electron acceptor;	
			5	(so) no, Krebs cycle/link reaction/oxidative phosphorylation/chemiosmosis;	[max 3]
		(ii)	1	lipid contains (relatively) more, hydrogen atoms/C-H;	
			2	detail ; e.g. molecular formula of glucose and a lipid given	
			3	more reduced, NAD/FAD, produced;	
			4	more electrons passed along ETC;	
			5	more hydrogen ions pumped across inner mitochondrial membrane/ more hydrogen ions pumped into intermembrane space/steeper proton gradient;	[max 3]
					[Total: 8]

4	(a	ade	denine / nitrogen(ous) base / purine ; R adenosine	
		ribo	pose / pentose ;	[2]
	(b)	1. ((cell uses) ATP as source of energy;	
		2. /	ATP broken dow ;	
		3. ((so) cell must regenerate AT ;	
		4. f	from ADP and P;	
		5. r	ref. ADP / AMP, must be synthesised in the cel;	[max 2]
	(c)	(i)	1. palmitic acid has more , hydrogens / C-H bonds ;	
			2. per mole ;	
			3. hydrogens needed for, ATP production / chemiosmosis / oxidative	phosphorylatio ; [max 2]
		(ii)	alanine – starvation / lack of fat or carbohydrate;	
			lactate – after anaerobic respiration;	[2]
				[Total: 8]

- 5 (a 1. oxidative phosphorylation;
 - 2. oxygen i **final** electron acceptor;
 - 3. reduced to water / accepts hydrogen ion to form water A equation
 - 4. so electron transport chain can continue ora
 - 5. increases ATP production ora
 - 6. in absence of oxygen only glycolysis continu

[max 3]

- (b) (i) 1. lipid releases most energy;
 - 2. because it has more, hydrogens / C-H bonds
 - 3. per unit ma
 - 4. hydrogens needed for, ATP production / chemiosmosis

[max 3]

[1]

(ii) many more hydrogens available to, reduce / convert, oxygen to water;

[Total: 7]

CHEMISTRYONLINE

•	crista(e) / inner membrane ; matrix ;	[2]
(b) (i)	raise chemical PE of glucose / provide activation energy / AW;	[1]
(ii)	removes hydrogen / hydrogen carrier / coenzyme ;	[1]
(iii)	4; A net 2	[1]
(iv)	dehydrogenation; A oxidation decarboxylation; accept 'oxidative decarboxylation' for two marks	[2]
(v)	matrix;	[1]
(vi)	 accepted by NAD; passed to ETC; for oxidative phosphorylation; ref. proton pump / chemiosmosis; 	[2 max]
(c) 1. 2. 3. 4. 5. 6. 7. 8. 9.	found in all organisms; loss of phosphate / hydrolysis, leads to, energy release / release of 30.5 kJ (per mole); ADP + Pi ATP / reversible reaction; small packets of energy; small / water soluble, so can move around cell; (used by cells as) immediate energy donor; link between energy yielding and energy requiring reactions / AW; high turnover; example of use; e.g. active transport / muscle contraction / Calvin cycle / protein synthesis	[5 max]

[Total:15]

6