Respiration

Mark Scheme 6

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Energy and respiration		
Sub Topic	Respiration		
Booklet	Theory		
Paper Type	Mark Scheme 6		

Time Allowed: 78 minutes

Score : /65

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	(i)	cyt	oplasm / cytosol ;	[1]
	(ii)	1 2 3	NAD regenerated ; so glycolysis can continue ; to produce ATP ;	[2 max]
	(iii)	lac	tate dehydrogenase ;	[1]
	(iv)		nction - condensation / polymerisation ; and - glycosidic ;	[2]
(b)	in y 1 2 3 4 5 6 7	eth eth two eth not ide	carboxylation / CO ₂ removed ; anal (as intermediate step) ; anol produced ; b steps (from pyruvate) ; anol dehydrogenase ; a reversible reaction / ethanol cannot be converted back to pyruvate ; a of process less energy efficient ; bw ora for mp1, mp4, mp5, mp6 and mp7	[4 max]
(c)	(i)		bon dioxide produced divided by oxygen consumed; ume / number of moles (of both gases);	[2]
	(ii)		bohydrate = 1.0 ; d = 0.7 ;	[2]
	(iii)	inc	rease / go above one / infinity ;	[1]

[Total: 15]

2	(a) (i) phosphorylation;	[1]
	(ii) <u>lysis</u> ;	[1]
	(iii) dehydrogenation / oxidation; ignore reduction of NAD	[1]
	(b) provides activation energy / AW; for it to split / AW;	[2]
	 (c) 1. decarboxylated / carbon dioxide given off; 2. ethanal produced; 3. ethanal reduced; 4. by reduced NAD; 5. to ethanol; 6. dehydrogenase; 	[4 max]
		[Total: 9]

3 **(a)**

[5]

- (b) in mammals
 - 1. lactate produced / no ethanol produced;
 - 2. no, decarboxylation / carbon dioxide released;
 - 3. single step;
 - 4. lactate dehydrogenase;
 - 5. reversible;

[3 max]

- (c) in anaerobic respiration
 - 1. only glycolysis occurs / Krebs cycle stops / link reaction stops;
 - 2. glucose, not fully broken down / still contains energy;
 - 3. pyruvate does not enter mitochondrion;
 - 4. (no oxygen) so no final electron acceptor (in ETC);
 - 5. ETC stops;
 - 6. no oxidative phosphorylation;

[3 max]

[Total: 11]

```
4 (a)
          1
                     ATP as universal energy currency;
          2
                light energy needed for photosynthesis;
          3
                ATP used conversion of GP to TP;
          4
                ATP used to regenerate RuBP;
          5
                (energy needed for) anabolic reactions;
          6
                 protein synthesis / starch formation / triglyceride formation;
          7
                 activation energy;
          8
                 (activate) glucose in glycolysis;
          9
                     active transport;
          10
                    example; e.g. sodium / potassium pump
          11
                movement / locomotion;
          12
                    example; e.g. muscle contraction / cilia beating endocytosis /
          13
                 exocytosis / pinocytosis / bulk transport;
                                                            temperature
                                                                                            [9 max]
          14
                regulation;
               idea of lipid > protein > carbohydrate / AW; A lipid has more energy than
    (b)
         15
               either protein or carbohydrate
         16
               comparative figures; e.g. 39.4, 17.0 and 15.8
                                                                  accept any two
         17
               kJ g<sup>-1</sup> / per unit mass;
         18
               more hydrogen atoms in molecule, more energy;
         19
               lipid have more, hydrogen atoms / C-H bonds;
         20
               (most) energy comes from oxidation of hydrogen to water;
         21
               using reduced, NAD / FAD;
         22
               in ETC;
         23
               detail of ETC;
         24
               ATP production
                                                                                            [6 max]
```

[Total: 15]

5	(a)	1	acetyl CoA combines with oxaloacetate ;	
		2	to form citrate ;	
		3	4C to 6C;	
		4	decarboxylation / CO ₂ released ;	
		5	dehydrogenation / oxidation / release of hydrogen ;	
		6	reduced NAD produced / NAD accepts hydrogen;	
		7	reduced FAD produced / FAD accepts hydrogen ;	
		8	ATP produced ;	
		9	substrate level phosphorylation ;	
		10	series of, steps / intermediates; A many named steps off a diagram	
		11	enzyme catalysed reactions ;	
		12	oxaloacaetate regenerated;	
		13	occurs in mitochondrial matrix ;	[9 max]
			accept diagram	
	(b)	14	coenzyme ;	
		15	for dehydrogenase ;	
		16	reduced;	
		17	carries, electrons <u>and</u> protons / hydrogen / NAD	
		18	from Krebs cycle ;	
		19	and glycolysis ;	
		20	to ETC / electron carrier chain / oxidation ;	
		21	reoxidised / regenerated hydrogen removed ;	
		22	ATP produced ;	[6 max]
				[Total: 15]