Respiration

Mark Scheme 7

Level	International A Level			
Subject	Biology			
Exam Board	CIE			
Topic	Energy and respiration			
Sub Topic	Respiration			
Booklet	Theory			
Paper Type	Mark Scheme 7			

Time Allowed: 60 minutes

Score : /50

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Question			E Answers M	Marks
1	(a)	1 2 3 4 5	(carbohydrates) less reduced / less hydrogen / less C-H bonds; R H ₂ for, aerobic respiration / ETC / NAD / ATP; less energy; per, unit mass / mole; accept figs for 3 and 4 carbohydrate has lower energy density;; accept as alternative to 3 & 4 for 2 marks 3	3 max
	(b)		carbohydrate = 1.0 ; lipid = 0.6 – 0.8 ;	2
	(c)		RQ remains stable between 3°C and 10°C / AW; rise between 10°C and, 20°C / 25°C; 0.74 to, 0.76 / 0.8; accept difference for figs marks sharp rise, between 25°C and 27°C / after 25°C; 0.8 to 0.91 / peaks at 0.91; 3 max at low temperatures hamster uses lipids; reason; e.g. more heat generated from lipid respiration at higher temperatures more carbohydrates are used;	max
	(d)		anaerobic respiration / conversion of carbohydrate to fats as animal hibernates; [Total: 10]	1

Describe the transfer of energy to ATP during photosynthesis. 2 **(a)** [6] (b) Describe the process of oxidative phosphorylation. [9] [Total: 15] (a) light absorbed by chlorophyll / AW; 2 ref. photosystems; ref. harvesting clusters / accessory pigments; 4 reaction centre / P680 / P700; 5 excitation of electrons / AW; 6 ETC; 7 idea of different energy levels; 8 ADP + Pi \rightarrow ATP; 9 cyclic / non-cyclic, photophosphorylation; 10 chemiosmosis / ATP synthase / description; 6 max (b) 11 reduced NAD / FAD; 12 passed to ETC; 13 hydrogens removed; R H₂ 14 split into H⁺ and e⁻; 15 e passed to carriers; 16 H⁺ stays in mitochondrial matrix; 17 oxygen final e carrier; 18 joins with H⁺ / reduced; R H₂ / hydrogen 19 forms water; 20 ref. energy levels of carriers; 21 energy available to convert ADP and Pi to ATP; 22 occurs three times (for each reduced NAD) / ref. total yield ; 23 chemiosmosis / ATP synthase / description; 9 max

Dr. Asher Rana

[Total: 15]

3	(a) Describe the main features of the Krebs Cycle. [9]					
	(b) Explain the role of NAD in aerobic respiration. [6]					
	(a)		matrix;			
		2	of mitochondrion;			
		3	acetyl CoA combines with oxaloacetate;			
		4	to form citrate;			
		5	4C to 6C;			
		6	decarboxylation/produce CO ₂ ;			
		7	dehydrogenation/oxidation;			
		8	2CO ₂ released;			
		9	reduced NAD produced; accept reduced coenzyme for	or one mark - annotate 9/10		
		10	reduced FAD produced;			
		11	ATP produced;			
		12	series of steps/intermediates;			
		13	enzyme catalysed reactions;			
		14	oxaloacetate regenerated;			
		15	S AVP;	9 max		
	(b)	١	coenzyme;			
		17	for dehyrogenase;			
		18	reduced;			
		19	carries electrons;			
		20	and protons/H ⁺ /H/hydrogen; R H ₂ /hydroge	en molecules		
		21	from Krebs cycle;			
		22	and from glycolysis;			
		23	to cytochromes/electron transfer chain;			
		24	reoxidised/regenerated;			
		25	ATP produced;			
		26	3/2.5 (molecules of ATP) per reduced NAD;	6 max		
				Total 15		

Question 4

(a) cytoplasm; 2 matrix in mitochondria; (b) coenzyme; carries electrons / protons / hydrogen ions / hydrogen / H / 2H / H⁺; R H₂ to electron transfer chain / AW; from glycolysis / link reaction / Krebs cycle; role of NAD in conversion / oxidation of triose phosphate to pyruvate in glycolysis; role of NAD in anaerobic respiration; 3 max (c) in absence of oxygen electron transfer chain does not work; oxygen final acceptor at end of electron transfer chain; 3 reduced NAD cannot be oxidised;

(d) aerobic respiration produces more ATP / (ora); to produce the same amount of ATP more glucose broken down in glycolysis; glycolysis is the only part of respiration used / no ETC or oxidative phosphorylation; 2 max

Total: 10