Photosynthesis as an energy transfer process

Mark Scheme 2

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Photosynthesis
Sub Topic	Photosynthesis as an energy transfer process
Booklet	Theory
Paper Type	Mark Scheme 2

Time Allowed: 64 minutes

Score : /53

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a) 1. in C3 plants at high temperature rubisco combines with oxygen;
 - 2. less rubisco to combine with CO₂;
 - 3. *in C4 plant such as maize idea of* spatial separation of light-dependent stage from carbon fixation;
 - 4. rubisco/RuBP, in bundle sheath cells;
 - 5. kept away from, oxygen/air;
 - 6. mesophyll cells, absorb CO2;
 - 7. 2 released to combine with RuBP;
 - 8. avoid/reduce photorespiration;
 - 9. high optimum temperatures of enzymes involved;
 - 10. Calvin cycle can continue;
 - 11.AVP; e.g. CO₂ reacts with PEP PEP carboxylase

[max 7]

- (b) 12. light energy absorbed by chlorophyll;A photosystems/pigments
 - 13. electron, excited/raised to higher energy level;
 - 14. (electron) emitted by chlorophyll;A photosystems/pigments
 - 15. passes to electron, acceptor/carrier;
 - 16. passes along, chain of electron carriers/ETC/Electron Transfer Chain;
 - 17. energy released used to pump protons; I ATP production here
 - 18. into thylakoid space;
 - 19. thylakoid membrane impermeable to protons;
 - 20. prot gradient forms;
 - 21. protons move down gradient;
 - 22. through/using, ATP synthase/ATP synthetase; **R** ATPase
 - 23. enzy rotates;
 - 24. ATP produced from ADP and Pi;

[max 8]

[Total: 15]

- 2 (a (i) in high light intensity
 - 1. (as temperature increased) the volume of oxygen released / rate of photosynthesis, increased to a peak **and** then fell;

in low light intensity

- 2. (as temperature increased) the volume of oxygen released / rate of photosynthesis, remained constant **and** then fell;
- 3. supporting figures (two oxygen values at two different temperatures plus units); [3]
- (ii) 1. light no longer limiting / temperature now limiting;
 - 2. enzymes denatured / described;
 - 3. so fewer enzyme-substrate complexes / AW;
 - 4. so less photolysis (leads to less oxygen produced); [2 max]
- (b) (i) photolysis; [1]
 - (ii) P680; A (photosystem) II [1]
 - (iii) respiration uses oxygen; [1]
 - [Total: 8]

3	(a)	_	ore references to function cept from diagram	
		1.	3 – 10 μm (diameter);	
		2.	double membrane;	
		3.	ground substance / stroma;	
		4.	contains enzymes / named enzyme, e.g. rubisco;	
		5.	also, sugars / lipids / starch;	
		6.	70S / AW, ribosomes;	
		7.	circular DNA;	
		8.	internal membrane system / fluid-filled sacs / thylakoids; A flattened sacs	
		9.	grana are stacks of thylakoids;	
		10.	(grana) membranes hold, photosynthetic pigments / ATP synthase / ETC;	[7 max]
	(b)	11.	ethene (in plant);	
		12.	stimulates production of gibberellin;	
		13.	gibberellin stimulates, cell division / cell elongation / increase in stem length;	
		14.	leaves / flowers, above water;	
		15.	(so) photosynthesis can occur;	
		16.	(so) sexual reproduction / pollination, can occur;	
		17.	aerenchyma / description;	
		18.	assists gas diffusion (within plant);	
		19.	air can be trapped by specialised underwater leaves;	
		20.	(submerged parts of plant) carry out anaerobic respiration;	
		21.	produce ethanol;	
		22.	can tolerate high concentrations of ethanol;	
		23.	produce a lot of ethanol dehydrogenase;	[8 max]
				[Total: 15]

- 4 (a (i) 1. 26 °C optimum temperature for, rubisco / enzyme of Calvin cycle;
 - 2. (at just over 40 °C) enzymes / rubisco, denatured;
 - 3. so less carbon dioxide fixed;
 - 4. reduction in Calvin cycle / AW;
 - 5. increased rate of transpiration / AW;
 - 6. so stomata close;
 - 7. less carbon dioxide uptake;
 - 8. oxygen more likely to combine with rubisco;
 - 9. so increased photorespiration;

[5 max]

- (ii) curve of C4 drawn with optimum to the right of existing curve; 1 mark
 - 1. C4 / sorghum, enzymes, have higher optimum temperature (than C3);
 - 2. has leaf structural features to avoid photorespiration;
 - 3. adapted to hot climate;

2 max

[3 max]

(b) (i)

light intensity /lux	total CO₂ uptake / μmol	rate of photosynthesis /µmol s ⁻¹
5	36	1.8
10	84	4.2
13	104	5.2
15	120	6.0

all 3 correct = 1 mark [1]

(ii) axes correct;

units:

correct plotting;

suitable curve; between 5 and 15 lux

accept ecf from table

[3 max]

(iii) when a process is affected by more than one factor / AW;

the rate of photosynthesis is, restricted by / AW, the factor that is nearest its lowest value ;

[2]

(iv) light intensity;

[1]

[Total: 15]

