Photosynthesis as an energy transfer process

Mark Scheme 3

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Photosynthesis
Sub Topic	Photosynthesis as an energy transfer process
Booklet	Theory
Paper Type	Mark Scheme 3

Time Allowed: 74 minutes

Score : /61

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- **1** (a) 1. photosystem I (PI) and photosystem II (PII) involved; 2. light harvesting clusters; light absorbed by accessory pigments; 4. primary pigment is chlorophyll a; energy passed to, primary pigment / chlorophyll a; electrons, excited / raised to higher energy level; (electrons) taken up by electron acceptor; (electrons) pass down electron carrier chain (to produce ATP); PII has (water splitting) enzyme; 10. water split into protons, electrons and oxygen; A equation 11. photolysis: 12. electrons from PII pass to PI / electrons from water pass to PII; 13. to replace those lost; give either in relation to PI or PII 14. protons and electrons combine with NADP (to produce reduced NADP); can award these marking points from a diagram [9 max]
 - (b) 15. RuBP combines with carbon dioxide;
 - 16. rubisco;
 - 17. forms unstable 6C compound;
 - 18. produces two molecules of, GP / PGA;
 - 19. GP / PGA, converted to TP;
 - 20. by reduced NADP and ATP;
 - 21. from light dependent stage;
 - 22. TP used to regenerate RuBP;
 - 23. using ATP;
 - 24. TP can form, hexose / fatty acids / acetyl CoA

[6 max]

[Total: 15]

2 **(a)** 1. (photosynthetic pigments) arranged in light harvesting clusters; 2. primary pigments / chlorophyll a; at reaction centre; 3. P700 / PI, absorbs light at 700nm; accessory pigments / chlorophyll b / carotenoids; surround, primary pigment / reaction centre / chlorophyll a; absorb light; 7. pass energy to, primary pigment / reaction centre / chlorophyll a; (light absorbed results in) electron excited / AW; 10. emitted from, chlorophyll / primary pigment / reaction centre; 11. passes to electron, acceptor / carrier; 12. (electron) passes along, chain of electron carriers / ETC; 13. ATP (synthesis); 14. electron returns to, P700 / PI; [8 max] (b) 15. photolysis of water; 16. releases H⁺; **R** H / hydrogen atoms 17. by, P680 / PII; 18. e released from, P700 / PI; 19. e⁻ (from PI) and H⁺ combine with NADP; 20. used in Calvin cycle; 21. reduces, GP / PGA; 22. to TP; 23. ATP used (during reduction of GP);

CHEMISTRY ONLINE

24. NADP, regenerated / oxidised;

[7 max]

[Total: 15]

3 (a (i) J – epidermis/epidermal cell; K - mesophyll (cell); L - bundle sheath (cell); [3] mesophyll cells tightly packed/AW; (ii) 1 2 so O2 cannot reach bundle sheath cells; 3 light independent stage/Calvin cycle or RuBP, in bundle sheath cells; 4 ref. malate shunt; 5 maintains high CO₂ concentration (in bundle sheath cells); 6 PEP carboxylase, has high optimum temperature/has higher affinity for CO₂/doesn't accept O₂; 7 (PEP carboxylase) not denatured; 8 photorespiration is avoided; [4 max] **(b)** 1 reduces water loss/AW; 2 wax does not melt;

CHEMISTRY ONLINE — TUITION —

shiny surface reflects radiation;

3

[2 max]

(c) (i) greater reduction in sorghum than in soybean; use of comparative figures; e.g. sorghum 5.5 to 1.2 or by 4.3 soybean 5.2 to 1.6 or by 3.6

[2]

- (ii) reject 'no' for all points
 - 1 less surface area;
 - 2 less absorption of light;
 - 3 less, photophosphorylation / light dependent reaction;
 - 4 less chemiosmosis;
 - 5 (due to) smaller thylakoid space **or** reduced proton gradient;
 - 6 less ATP (produced);
 - 7 less reduced NADP (produced);
 - 8 light-independent reaction / Calvin cycle, slows down;
 - 9 less carbon dioxide, fixed / combined with PEP; R uptake

[4 max]

[Total: 15]

4	(a	(i)	gly	colysis;	[1]
		(ii)	cyto	oplasm/cytosol;	[1]
		(iii)	4;	A $4 - 2 = 2$	[1]
	(b)	(i)	<u>inn</u>	er membrane/cristae/stalked particles ;	[1]
		(ii)	1	reduced, NAD/FAD;	
			2	dehydrogenase enzymes ;	
			3	release hydrogen; A H R H ₂ /H ⁺	
			4	hydrogen splits into proton and electron;	
			5	electrons flow down, ETC/AW;	
			6	energy released;	
			7	protons pumped (across inner membrane/from matrix);	
			8	into intermembrane space ;	
			9	proton gradient;	
			10	protons pass through, ATP <u>synthase</u> /stalked particle;	
			11	oxygen final, hydrogen/proton, acceptor;	[5 max]
	(c)	(i)	nuc	<u>clei</u> and <u>ribosomes</u> ;	[1]
		(ii)	1	glycolysis, does not occur in mitochondrion/only occurs in cytosol or cytoplas	sm ;
			2	pyruvate produced in glycolysis;	
			3	pyruvate can enter mitochondrion/glucose cannot enter mitochondrion;	
			4	carbon dioxide produced/decarboxylation, in, Krebs/link reaction;	[3 max]
		(iii)	1	cyanide, inhibits cytochrome oxidase is a non-competitive inhibitor;	
			2	reduced NAD not oxidised/AW;	
			3	Krebs cycle stops ;	
			4	alternative H acceptor needed/pyruvate is H acceptor/pyruvate is reduced;	R H⁺
			5	lactate produced in cytoplasm;	
			6	by <u>anaerobic</u> respiration;	[3 max]