Photosynthesis as an energy transfer process

Mark Scheme 6

Level	International A Level					
Subject	Biology					
Exam Board	CIE					
Topic	Photosynthesis					
Sub Topic	Photosynthesis as an energy transfer process					
Booklet	Theory					
Paper Type	Mark Scheme 6					

Time Allowed: 47 minutes

Score : / 39

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) top half of leaf/just below (upper) epidermis; packed (densely); long axis in line with incident light/AW;

2 max

(b) contain large numbers of chloroplasts/large amount of chlorophyll; large vacuole; (only give if linked to next point) chloroplasts (in cytoplasm) close to cell wall/cell membrane; short diffusion pathway; (cell) elongated/arranged to intercept (maximum) light; thin (cell) wall; ref. movement of chloroplasts;

3 max

(c) contains photosystems/PS1 and PS2/chlorophyll and accessory pigments/ reaction centres; maintain carriers/receptors in position; site of photophosphorylation/light reaction; site of ETC; ref. proton pumping/proton gradient; large surface area;

4 max

(d) ref. to Rubisco; carbon dioxide combines with RuBP; driven/powered by ATP; and reduced NADP; forms PGA;

produce ATP/ref. ATP synthase;

produce reduced NADP;

2 max

Total: 11

2 (a	a (i)) A – RuBP/ribulose bisphosphate ;							
		B – fatty acid ;							
		C – nitrates ; A suitable nitrogenous substance e.g. ammonium ionsI nitrogen/ammonia							
	(ii)	non-cyclic photophosphorylation; [1]							
	(iii)	condensation/polymerisation; A anabolic							
		glycosidic;	[2]						
	(iv)	1 enters via stoma(ta);							
		2 by diffusion/down a concentration gradient;							
		3 passes through air spaces ;							
		4 dissolves in film of water (on cell surface);							
		5 (diffuses) through cell, wall/surface membrane (of palisade cells);	[max 3]						
(k	o) 1	excited electrons leave, chlorophyll a/photosystem;							
	2	pass along ETC ;							
	3	protons present from photolysis;							
	4	protons (pumped) into intermembrane space ;							
	5	rubisco is in stroma ;							
	6	idea that protons leaving stroma raises pH;	[max 3]						
			[Total: 12]						

- 3 (a (i) 1. (blue) light is absorbed and used for photosynthesis;
 - 2. CO₂, used / concentration decreased;
 - 3. leads to, rise in pH / decrease in acidit ;

[max 2]

- (ii) 1. respiration but no photosynthesis;
 - 2. CO₂, produced / released;
 - 3. leads to, decrease in pH / increase in acidit ;

[max 2]

[2]

[1]

(b) (i) absorb light (energy);

pass (light) energy onto, primary pigment / chlorophyll a / reaction centre;

(ii) $H_2O \longrightarrow 2H^+ + 2e^- + \frac{1}{2}O_2$;

A
$$2H_2O \longrightarrow 4H^+ + 4e^- + O_2$$
 [1]

(iii) grana / thylakoid, membrane;

[Total: 8]

4	(a	A – photosystem II / P680 / PS II ;	,
---	----	-------------------------------------	---

B – photosystem I / P700 / PS I; if photosystem given for both but wrong way round give one mark

[2]

(b) (i) 1. carbon dioxide fixation;

2. production of GP

3. ref. to rubisco

[max 2]

(ii) 1. reduction (of GP) / donates hydrogen;

2. GP to

[2]

(iii) 1. supplies, energy / phosphate;

2. (to convert) GP to

3. (to) regenerate of Ru

[max 2]

[Total: 8]

CHEMISTRY ONLINE
— TUITION —