The roles of genes in determining the phenotype Question Paper 3

Level	International A Level				
Subject	Biology				
Exam Board	CIE				
Topic	Inherited change				
Sub Topic	The roles of genes in determining the phenotype				
Booklet	Theory				
Paper Type	Question Paper 3				

Time Allowed: 66 minutes

Score : /55

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	Explain what is meant by a gene mutation and outline the possible consequences of a gene mutation for an organism. [9]
	(b)	Explain how faulty CFTR proteins in cell surface membranes can lead to the symptoms of cystic fibrosis. [6]
		[Total: 15]
		CHEMISTRY ONLINE

 	•••••		
 			•••••
 /TTT1			
		<u> </u>	

 	•••••		
 			•••••
 /TTT1			
		<u> </u>	

A mutation in a gene in the fruit fly, *Drosophila melanogaster*, gives rise to white-eyed flies instead of the normal red-eyed flies. The allele for red eyes (**R**) is dominant to the allele for white eyes (**r**).

A student crossed a red-eyed fly with a white-eyed fly.

The results are shown in Table 1.1.

Table 1.1

phenotype of fly	number of offspring
red-eyed female	54
red-eyed male	0
white-eyed female	0
white-eyed male	46

(a) In Drosophila, males possess two different sex chromosomes, X and Y, as in humans.

Complete the genetic diagram below to show how the results in Table 1.1 could have been produced.

parental phenotypes	red-eyed fly	white-eyed fly	
parental genotypes			
gametes			
	ISTRYON	ILINE	
offspring genotypes	TUHTION		
offspring phenotypes	red-eyed female	white-eyed male [3]]

(b)	(i)	The chi-squared (χ^2) test can be	used to analyse the results in Table 1.1.
		The expected ratio of red-eyed fe	emales to white-eyed males is 1:1.
		Complete Table 1.2 and use this	to calculate a value for chi-squared (χ^2).
		$\chi^2 = \sum \frac{(O-E)^2}{E}$	<i>v</i> = n−1

<u>key</u>

 $\Sigma = \text{sum of}$

v = degrees of freedom

n = number of classes

O = observed value

E = expected value

Table 1.2

phenotype of fly	0	E	O–E	(O-E) ²	(O-E) ²
red-eyed female					
white-eyed male					

$$\chi^2 =$$
[3]

(ii) Use your calculated value of χ^2 and the table of probabilities below, to test the significance of the difference between observed and expected results.

degrees of		proba	bility	у		
degrees of freedom	0.90	0.50	0.10	0.05		
1	0.02	0.45	2.71	3.84		
2	0.21	1.39	4.61	5.99		

	[O
 	 [Z]

[Total: 8]

3	dev	wers are the organs of sexual reproduction in plants. Before fertilisation and seed elopment can take place, pollination must occur. This can be either self-pollination or ss-pollination, and can be carried out by insects or by wind.
	(a)	Explain the meaning of the term self-pollination.
		[2]
	(b)	Explain why cross-pollination may be more beneficial to a species than self-pollination.
		[3]
	(c)	In maize, wind pollination occurs. An investigation was carried out to find out how the length of time that maize pollen is in the air affects its ability to bring about fertilisation in
		a female flower.
		Pollen grains were removed from maize flowers and left exposed to the air for varying times.

The results are shown in Fig. 5.1.

The pollen grains were then placed onto groups of female flowers.

seeds. The number of seeds per ear was counted.

The groups of fertilised flowers developed into 'ears', each containing many

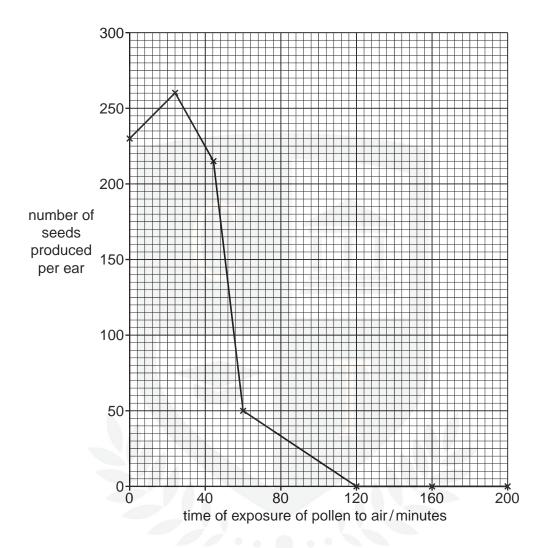


Fig. 5.1

uld be used to devise strategies that .	uggest how the results ould reduce the possib
	 ·
[2]	
[Total: 9]	

4	(a)	Describe the first division of meiosis (meiosis I) in animal cells.	[6]
	(b)	Discuss the link between the frequency of sickle cell anaemia and the number of malaria.	of cases [9]
		т	otal: 15]
•••••			
		CHEMISTRY ONLINE	
		— TIIITION —	

				 •	
	 		•••••	 	
		·········		 Т.	
GII.	TOTI			L	

	 		• • • • • • • • • • • • • • • • • • • •	
	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	 •		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	 			
	 		•••••	
		7 (1)		

5			fur colour is conticular order.	ontrolled by a gene v	les. These alleles are listed below			
				black and tan = C ^{bt} agouti = C ^a		yellow = C ^y black = C ^b		
	(a)	Sug	gest explanat	ions for the results of	the following cr	osses betwee	n mice.	
		(i)		gouti fur crossed wisome agouti and som			produce all	agouti
		(ii)		veen heterozygous p				
			CHE	EMISTI TUI	RY OI FION	NLIN	<u>IE</u>	
								ı
								ر∠ا

- (iii) Mice with yellow fur crossed with mice with black fur will produce one of the following outcomes:
 - some yellow offspring and some agouti offspring
 - some yellow offspring and some black and tan offspring
 - some yellow offspring and some black offspring.

	[2]
(b)	A test cross is used to determine the genotype of an organism.
	Describe how you would carry out a test cross to determine the genotype of a black and tan mouse.
	CHEMICTOVONITINE
	[2]
	[Total: 8]