Passage of information from parent to offspring

Mark Scheme 2

Level	International A Level					
Subject	Biology					
Exam Board	CIE					
Topic	Inherited change					
Sub Topic	Passage of information from parent to offspring					
Booklet	Theory					
Paper Type	Mark Scheme 2					

Time Allowed: 66 minutes

Score : /55

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	′77.5%	70%	62.5%	57.5%	45%	<45%

(a W^R = allele for warfarin resistance 1 **W**^s = allele for warfarin susceptibility parental phenotypes resistant male resistant female $W^R W^S$ $W^R W^S$ parental genotypes \mathbf{W}^{R} ws gametes w^R w^R w^R w^S WR WS offspring genotypes offspring resistant resistan resistant phenotypes [3] **(b)** not enough Vitamin K found (in the wild) / require too much Vitamin K; [1] (c) competitive / reversible; as the concentration of inhibitor increases, the rate of the (inhibited) reaction decreases or as dose of warfarin increases, the rate at which blood clots decreases; ora [2] (d) 1. different, codon / triplet; 2. stop codon; different amino acid; different, primary / secondary / tertiary / 3D, structure;

[Total: 9]

[3 max]

5.

shortened, polypeptide / protein;

6. change in function of protein;

2 (a heterozygous

two different alleles of a gene / different allele pair for a gene / AW;

produces gametes with different genotypes;

max 1

genotype

alleles present in an organism / particular alleles of a gene / genetic constitution / AW; [2]

(b) parental genotypes

AaDd x AaDd;

gametes

AD Ad aD ad x AD Ad aD ad;

two marks for correct Punnett square ;; deduct one mark for each mistake

(all 4) phenotypes linked correctly to genotypes;

(probability of yellow offspring) 3 out of 16 or 0.19 or 19%;

[6]

[Total: 8]

(a (i) 1. hybrid vigour; increased heterozygosity / decreased homozygosity; 3. increases gene pool / AW; 4. harmful recessive alleles less likely to be expressed / reduces inbreeding depression; 5. increased yield; 6. other named useful characteristic; e.g. disease resistance / more nutritious [3 max] (ii) high cost (of seed) / farmers must buy new seed each year; [1] (b) (i) 1. stomata closed; 2. to reduce transpiration / to avoid too much loss of water; 3. so carbon dioxide cannot enter the leaf; 4. so carbon dioxide concentration (in leaf / in chloroplast) becomes very low; [3 max] (ii) 1. RuBP / rubisco / Calvin cycle, present in bundle sheath cells; 2. which are tightly packed; 3. which are not in contact with air (spaces); 4. so are not exposed to oxygen; 5. CO₂ / malate, delivered to bundle sheath cells; 6. from mesophyll (cells); 7. (so) CO₂ concentration in bundle sheath cells always high; [4 max] (c) (i) 1. CO₂ concentration (in bundle sheath cells) is always high; 2. CO₂ not limiting; 3. another factor / light intensity / temperature, limiting; 4. no photorespiration; [2 max] (ii) 1. idea of change in temperature; 2. affects, light independent / light dependent, stage (of photosynthesis); or 3. idea of change in light intensity; 4. affects light dependent stage (of photosynthesis); [2]

[Total: 15]

- 4 **(a)** gene mutation
 - 1. spontaneous / random, change;
 - 2. in, base sequence / nucleotide sequence / mRNA code / codon;
 - 3. example; e.g. addition / insertion / substitution / deletion / inversion *triplet code*
 - 4. (sequence of) three (DNA nucleotide) bases;
 - 5. complementary to mRNA codon;
 - 6. codes for a specific amino acid;

4 max

(b)

parental phenotypes man without HD woman with HD

parental genotypes tt

gametes all t T or t;

offspring genotypes Tt tt

offspring phenotypes Huntington's disease normal;

probability of first child having D 50% / 0.50 / 1 in 2;

[Total: 7]

[3]

CHEMISTRYONLINE

- allele/gene, found on **X** chromosome; (a 2 females have two copies of, allele/gene; males have only one copy of, allele/gene; 3 [2 max] (b) key to symbols X^a (= allele for CI) recessive allele X^A (= allele for normal iris); dominant allele cross 1 parental phenotypes male with CI/cleft iris and normal female ; Α; Xa or Y gametes X^AY ; X^AX^a offspring genotypes offspring phenotypes normal female normal male; or cross 2 parental phenotypes male with CI/cleft iris and normal female ; gametes or X^aX^a offspring genotypes $X^{a}Y$; offspring phenotypes I cleft iris/CI normal normal female [5] male le male offspring phenotypes must be linked to genotypes (c) 1 in 4/25%/0.25; R ratios
 - [Total: 8]

5

(a) key; black upper case, chestnut lower case gametes; offspring genotypes and chestnut identified; 25% / 0.25 / 1/4 / 1 in 4, (probability); ignore ratios [4] (b) $aaCC^{CR}$ AaCC parental genotype parental phenotype palomino / cream black; aC^{CR} аC gametes AC aC; aaCC^{CR}: **AaCC** offspring genotypes aaCC Aa any order offspring phenotypes chestnut black palomino / cream; black order linked to genotype order ecf can be applied to offspring genotypes and phenotypes [4]

[Total: 8]

CHEMISTRY ONLINE

TITTON