The roles of genes in determining the phenotype

Mark Scheme 3

Level	International A Level						
Subject	Biology						
Exam Board	CIE						
Topic	Inherited change						
Sub Topic	The roles of genes in determining the phenotype						
Booklet	Theory						
Paper Type	Mark Scheme 3						

Time Allowed: 66 minutes

Score : /55

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

```
1 (a) 1. chance / random / spontaneous;
    2. change in, base / nucleotide, sequence (in DNA;
    3. during DNA replicatio;
    4. base substitutio ;
    5. often no effec / silent mutation / may code for same amino acid;
    6. base additio / base deletion;
    7. have great effect on phenotyp;
    8. frame shift;
    9. alters whole sequence of bases after mutatio ;
    10. may lead to stop cod
    11. different / new, alle ;
    12. protein, different shape / different function / not ma
                                                                                         [max 9]
(b) 1. no / no functional, channels for Cl ions;
    2. Cl ions do not move out;
    3. le water leaves cell;
    4. mucus (on cell surface membrane) stays, thick / stick ;
    5. symptoms – an 4 from:
       mucus not moved effectively by cilia / mucus accumulates;
    6. reduced gaseous exchange / longer diffusion pathwa ;
    7. difficulty in breathin ;
    8. more infections / (mucus) traps bacteri ;
    9. lungs are scarre;
    10. blocked sperm duc ;
    11. blocked pancreatic du ;
                                                                                         [max.6]
                                                                                      [Total: 15]
```

(b) (i)

phenotype of fly	0	Е	O-E	(O-E) ²	<u>(O–E)²</u> E
red-eyed female	54	50	(+)4	16	0.32;
white-eyed male	46	50	(-)4	16	0.32;

0.64; allow ecf [3]

(ii) probability is greater than 0.05; A chi squared smaller than 3.84

no significant difference;

due to chance; [max 2]

[Total: 8]

- 3 (a transfer of pollen from <u>anther</u> to <u>stigma</u>; on the same, flower / plant; [2]
 - (b) 1. idea of genetic variation;
 - 2. increased heterozygosity; ora
 - 3. hybrid vigour / decreased inbreeding depression;
 - 4. able to adapt to changing conditions;
 - 5. idea of some individuals surviving;
 - 6. AVP; e.g. reduced risk of expression of harmful recessive alleles [3 max]
 - (c) (i) 1. initially / first 24 mins, exposure time increases, number of seeds produced / (chance of) fertilisation;
 - 2. then / after 24 or 44 mins, steep decrease in, number of seeds produced / (chance of) fertilisation;
 - 3. from 120 mins, no seeds produced / no fertilisation; [2 max]
 - (ii) 1. plant GM maize some distance away from places that teosinte grows;
 - 2. estimate how far pollen can travel in 120 minutes;
 - 3. need more results between 60–120 minutes; [2 max]

[Total:9]

- (a 1. reduction division / (to) halve number of chromosomes / diploid to haploid / AW;
 - 2. homologous chromosomes pair up / bivalents form;
 - 3. ref. chiasmata / ref. crossing over;
 - 4. homologous chromosome pairs / bivalents, line up on equator;
 - independent assortment;
 - spindle / microtubules, attached to centromeres;
 - chromosomes of each pair pulled to opposite poles;
 - by shortening of, spindle / microtubules;
 - 9. nuclear envelopes re-form:
 - 10. cytokinesis / AW;

[6 max]

- (b) accept alternative symbols for alleles throughout
 - 11. frequency of sickle cell anaemia is highest in areas where malaria is common;
 - 12. sickle cell anaemia red blood cells cannot carry oxygen very well / AW;

A sickling blocks capillaries

- 13. homozygous H^S / H^SH^S, have sickle cell anaemia / may die ; 14. homozygous H^N / H^NH^N, have normal, Hb / red blood cells ;
- 15. heterozygotes, have sickle cell trait

(sickle cell trait) red blood cells not (severely) affected;

- 16. malaria parasite / Plasmodium, affects red blood cells;
- 17. malaria lethal;
- 18. sickle cell trait people / heterozygotes, less likely to suffer from (severe effects of) malaria;
- 19. have selective advantage;
- 20. pass on both H^N and H^S;
- 21. malaria selects against, homozygous H^N / H^NH^N;
- 22. sickle cell anaemia selects against, homozygous HS / HS HS;
- 23. idea that sickle cell allele is maintained within population

because of sickle cell trait individuals; [9 max]

[Total: 15]

- 5 (a (i) accept answers in a genetic diagram where genotypes are linked to phenotypes
 - agouti allele / Ca, dominant to black allele / Cb; ora
 - 2 black parents homozygous recessive;
 - agouti parents heterozygous or homozygous;

[2 max]

- (ii) accept answers in a genetic diagram where genotypes are linked to phenotypes
 - yellow allele / C^y, dominant to, black allele / C^b;
 - 2 ref. to modified 3:1:
 - (homozygous) genotype C^y C^y, lethal / does not survive;

[2 max]

- (iii) accept answers in a genetic diagram where genotypes are linked to phenotypes
 - yellow allele / Cy, dominant to all others;
 - agouti / Ca or black and tan / Cbt, allele, dominant to black allele; A black allele recessive to all other alleles
 - yellow mice all heterozygous (must be stated);

[2 max]

- cross (black and tan mouse) with, black mouse / homozygous recessive mouse / C^b (black and tan then parent, C^{bt} (black homozygous); **(b)** 1

 - if some offspring are black (and some are black and tan) then parent, CbtC* / heterozygous;

[2 max]

[Total: 8]