Natural and Artificial Selection

Mark Scheme 5

Level	International A Level	
Subject	Biology	
Exam Board	CIE	
Topic	Selection and evolution	
Sub Topic	Natural and artificial selection	
Booklet	Theory	
Paper Type	Mark Scheme 5	

Time Allowed: 59 minutes

Score : /49

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a random/spontaneous;

mutation;

base/nucleotide/triplet, change/substitution; R addition/deletion

2]

- (b) (i) as altitude increases frequency of A^0 increases; ora for A^1
 - **A**⁰ more frequent at high altitudes / **A**¹ more frequent at low altitudes / intermediate frequency of either allele at intermediate altitude;

[2]

(ii) idea of (pre-existing) genetic variation in deer mouse population;

at high altitude mice with, glycine/ \mathbf{A}^0 , more likely to survive/have selective advantage ; \mathbf{ora}

mice (with A⁰) reproduce (at high altitude); ora

and pass on the A⁰ allele; ora

partial pressure/concentration, of O₂ acts as a selection pressure;

ref. to disadvantage of haemoglobin with very high affinity at low altitude;

as less able to unload oxygen (in respiring tissues);

[max 4]

[Total:8]

2	(a)		parental genotypes; e.g. AaBb x AaBb gametes; correct use of punnett square; F1 genotypes; F1 phenotypes; (must link to genotypes) yellow and sphere ¹ / ₁₆ ;	[6]
	(b)	(i)	contract / die from, malaria ;	[1]
		(ii)	contract / die from, sickle-cell anaemia;	[1]
	(c)		resistant to malaria; detail; more likely to survive; and reproduce; pass on sickle-cell allele;	[3 max]
				[Total: 11]

(i) 1. coelacanth α chain has higher percentage of matches; 3 2. with both adult and larval amphibians 3. coelacanth β chain has higher percentage of matches with larval amphibians (rather than adults); 4. figures to support mp1 or mp3 or mp6 (comparing coelacanth with lungfish 5. supports closer relationship of coelacanth and amphibia 6. (but) lungfis β chain has higher percentage of matches with adult amphibian (than coelacanths); 7. does not support suggestion / supports closer relationship lungfish and amphibia [max 4] (ii) 1. larvae aquatic and adults (partly) terrestrial / AW; 2. different oxygen concentration available 3. need haemoglobins with different oxygen affinities [max 2] (b) (i) 1. idea of, unchanging / constant, environment; oxygen concentration acts as a selective agent organisms best adapted to these conditions survive ora 4. extreme (phenotypes) selected against 5. ref. narrow range of genetic variation / allele frequency maintained 6. sketch graph

7. ref. mutation

[max 3]

- (ii) 1. ref. change in oxygen concentration;
 - 2. (low) oxygen concentration acts as selective agent
 - 3. some individuals (in population) are better adapted
 - 4. these are more likely to survive ora
 - 5. directional selection
 - 6. sketch graph
 - 7. populations develop in different concentrations of oxygen
 - 8. disruptive selection
 - 9. sketch graph

allow either mp6 or mp9 but not both

[max 3]

- (c) 1. (same) species separated into separate populations;
 - 2. (by) geographical isolation / named example
 - 3. prevents interbreeding between populations / no gene flow
 - 4. ref. to different selection pressures
 - 5. change in allele frequencies
 - 6. eventually do not successfully interbreed
 - 7. allopatric speciation;
 - 8. ref. to genetic drift / founder effect / different mutations / (different) new alleles

[max 3]

[Total: 15]

- 4 **(a)** 1 occur during meiosis I; crossing over
 - 2 between non-sister chromatids;
 - 3 of, (a pair of) homologous chromosomes / a bivalent;
 - 4 in prophase 1;
 - 5 at chiasma(ta);
 - 6 exchange of genetic material / AW;
 R genes unqualified
 - 7 <u>linkage groups</u> broken / AW;
 - 8 new combination of <u>alleles</u> (within each chromosome); independent assortment
 - 9 of homologous chromosomes pairs / bivalents;
 - 10 each pair lines up independently of others;
 - 11 line up on equator;
 - 12 (during) metaphase 1;
 - 13 results in gametes that are genetically unique / AW;

[9 max]

(b)

	artificial selection		natural selection	
14	selection (pressure by) humans		environmental selection pressure;	
15	15 genetic diversity lowered		genetic diversity remains high;	
16	6 inbreedin common		outbreeding common;	
17	17 loss of vigour / inbreeding depression		increased vigour / less chance of inbreeding depression;	
18	8 increased homozygosity / decreased heterozygosity		decreased homozygosity / increased heterozygosity;	
19	no isolation mechanisms operating	or	isolation mechanisms do operate;	
20	(usually faster	or	(usually) slower;	
21	selected feature for human benefit	or	selected feature for organism's benefit;	
22	not for, survival / evolution	or	promotes, survival / evolution ;	

[6 max]

[Total: 15]