Natural and Artificial Selection

Mark Scheme 6

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Selection and evolution
Sub Topic	Natural and artificial selection
Booklet	Theory
Paper Type	Mark Scheme 6

Time Allowed: 57 minutes

Score : /47

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

```
1
      1
            nucleotide;
      2
            adenine + ribose / pentose + three phosphates;
      3
            loss of phosphate leads to energy release / hydrolysis releases 30.5 kJ;
      4
            ADP + Pi ← ATP (reversible reaction);
      5
            small packets of energy;
      6
            small / water soluble, so can move around cell;
      7
            used by cells as immediate energy donor;
      8
            link between energy yielding and energy requiring reactions / AW;
      9
            high turnover;
      10
            two examples of use;; e.g. active transport / muscle contraction /
            Calvin cycle /
      11
                                                                                        [8 max]
            protein synthesis
(b)
      12
            Pyruvate, cannot enter mitochondrion / remains in the cytoplasm;
      13
            becomes, hydrogen acceptor / reduced;
      14
            by reduced NAD;
      15
            from glycolysis;
      16
            converted to lactate;
      17
            lactate dehydrogenase;
      18
            allows glycolysis to continue;
      19
            no, decarboxylation / CO<sub>2</sub> removed;
      20
            single step;
      21
            reversible reaction / converted back to pyruvate;
      22
            by oxidation;
      23
            ref. oxygen debt;
      24
            ethanol produced;
            accept ora for marking points 19-23
                                                                                        [7 max]
```

2	(a)		AABBCC;	[1]			
	(b)		if doubling of chromosomes has not occurred				
		1	chromosomes would not be able to pair;				
		2	because chromosomes in the two sets are not homologous;				
		3	during, prophase 1 / meiosis 1;				
		4	(therefore) gametes cannot be produced;	[3 max]			
	(c)	1	unable to, breed / reproduce ;				
		2	to produce fertile offspring;				
		3	reproductively isolated ;	[2 max]			
	(d)	1	species split into two populations by (geographical) barrier;				
		2	different, selection pressures / (environmental) conditions, (on the two populations);				
		3	different features, selected / advantageous ;				
		4	change in, gene pools / allele frequencies ;				
		5	(over time) become unable to interbreed ;				
				[Total: 9]			

allopatric speciation; 3 **(a)** 1 geographical isolation / spatial separation; 2 3 e.g. of barrier; 4 e.g. of organism; must relate to 3 5 sympatric speciation; 6 example; 7 meiosis problems; 8 polyploidy; 9 behavioural / temporal / ecological / structural, isolation; (isolated) populations, prevented from interbreeding / can only breed 10 amongst themselves; 11 no, gene flow / gene mixing, (between populations); 12 different selection pressures operate; 13 natural selection; 14 change in allele frequencies; 15 different gene pool; 16 over time (differences prevent interbreeding);

17

reproductively isolated;

[8 max]

- (b) 18 humans; must be linked to, choosing / selecting / mating etc
 - 19 parents with desirable feature;
 - 20 e.g. organism and feature;
 - 21 bred / crossed;
 - 22 select offspring with desirable feature;
 - 23 repeat over many generations;
 - 24 increase in frequency of desired <u>allele(s)</u> / decrease in frequency of undesired <u>allele(s)</u>;
 - 25 background genes;
 - 26 loss of hybrid vigour / increase in homozygosity / ref. inbreeding depression;
 - 27 AVP; e.g. detail of breeding techniques

[7 max]

[Total: 15]

Question 4 (a)

Either

If genetic diagram used

Penalise once for incorrect symbols

orange dominant to black (or converse);

orange scallop

Or If text explanation given

orange dominant to black (or converse); orange are heterozygous; (because) ref. 3:1 ratio; link data to ratio; black are homozygous; because all offspring are black;

6

(b)

separate orange scallops produced from first cross / test cross orange with black; some will produce only orange offspring; these will be homozygous for orange allele/pure breeding;

2 max

Total: 8