Evolution

Mark Scheme 1

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Selection and evolution		
Sub Topic	Evolution		
Booklet	Theory		
Paper Type	Mark Scheme 1		

Time Allowed: 60 minutes

Score : /50

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	1.	<u>allopatric</u> speciation;	
	2.	fish populations isolated;	
	3.	geographical / physical / land, barrier;	
	4.	no, breeding / allele flow / gene flow, between populations;	
	5.	mutations occur;	
	6.	different selection pressures / different (environmental) conditions;	
	7.	advantageous alleles selected for / advantageous alleles passed on;	
	8.	change in, allele frequency / gene pool;	
	9.	(can result in) different chromosome numbers;	
	10.	genetic drift;	
	11.	ultimately, reproductively isolated / cannot interbreed;	[5 max]
(b)	1.	conditions remain the same within the pool;	
()	2.	best adapted fish (to conditions in pool) survive;	
	3.	extreme phenotypes, selected against / do not survive;	[2 max]
(c)	1.	numbers of all species increase initially;	
	2.	due to more, breeding space / food;	
	3.	competition between (four) species;	
	4.	(possible) reduction in numbers within, some / all, species;	
	5.	not all species (may) survive;	
	6.	different species, restricted to different areas / occupy different niches;	
	7.	interbreeding / hybridisation;	
	8.	AVP; e.g. ref. new selection pressure	[3 max]
			[Total: 10]

(a		ergence values less for <i>persimilis</i> than for <i>pseudoobscura</i> (at all DNA regions) ; ora e of figures ;	1 [2]
(b)	1	some regions of DNA more prone to mutation than others;	
	2	mutation in some regions likely to be fatal (so not seen in populations);	
	3	there tends to be less divergence if DNA is part of an important gene/ora;	
	4	detail; e.g. causes change in essential protein	[2 max]
(c)	1 2	allopatric speciation; geographical/physical, barrier;	
	3	no, breeding/gene flow, between populations;	
	4	mutations occur;	
	5	different selection pressures/different (environmental) conditions;	
	6	genetic change; e.g. different alleles selected for/change in allele frequency/change pool/advantageous alleles passed on;	ange in
	7	genetic drift;	
	8	(ultimately) cannot interbreed/reproductively isolated;	[4 max]
			otal: 8]

2

- **a** 1. human ;
 - 2. applies selection pressure
 - 3. for benefit of human
 - 4. choose / breed, parents with suitable trait
 - 5. named example (species and characteristic)
 - 6. select offspring
 - 7. repeat over several generations
 - 8. increased allele frequency

[4 max]

(b) (i) 140 (%) ;; 2 marks for correct answer (14/10 x 100 = 1 mark)

[2]

(ii) genetic variation;ref. polygenes;environmental variation;AVP; e.g. sampling / experimental, error

[2 max]

[Total: 8]

- 4 (a (i) 1. coelacanth α chain has higher percentage of matches ;
 - 2. with both adult and larval amphibians
 - 3. coelacanth β chain has higher percentage of matches with larval amphibians (rather than adults);
 - 4. figures to support mp1 or mp3 or mp6 (comparing coelacanth with lungfish
 - 5. supports closer relationship of coelacanth and amphibia
 - 6. (but) lungfis β chain has higher percentage of matches with adult amphibian (than coelacanths);
 - 7. does not support suggestion / supports closer relationship lungfish and amphibia [max 4]
 - (ii) 1. larvae aquatic and adults (partly) terrestrial / AW;
 - 2. different oxygen concentration available
 - 3. need haemoglobins with different oxygen affinities

[max 2]

- (b) (i) 1. idea of, unchanging / constant, environment;
 - 2. oxygen concentration acts as a selective agent
 - 3. organisms best adapted to these conditions survive ora
 - 4. extreme (phenotypes) selected against
 - 5. ref. narrow range of genetic variation / allele frequency maintained
 - 6. sketch graph

7. ref. mutation [max 3]

- (ii) 1. ref. change in oxygen concentration;
 - 2. (low) oxygen concentration acts as selective agent
 - 3. some individuals (in population) are better adapted
 - 4. these are more likely to survive ora
 - 5. directional selection
 - 6. sketch graph
 - 7. populations develop in different concentrations of oxygen
 - 8. disruptive selection
 - 9. sketch graph

allow either mp6 or mp9 but not both

[max 3]

- (c) 1. (same) species separated into separate populations;
 - 2. (by) geographical isolation / named example
 - 3. prevents interbreeding between populations / no gene flow
 - 4. ref. to different selection pressures
 - 5. change in allele frequencies
 - 6. eventually do not successfully interbreed
 - 7. allopatric speciation;
 - 8. ref. to genetic drift / founder effect / different mutations / (different) new alleles

[max 3]

5	(a)	allopatric;	[1	1
---	-----	-------------	----	---

- (b) 1. packs / populations, isolated from each other;
 - 2. inbreeding / no interbreeding;
 - 3. little mutation;
 - 4. AVP; e.g. small population to start with / small gene pool to start with [2 max]
- (c) 1. agriculture / buildings / AW;
 - 2. idea of wolves dying;
 - 3. hunting / trapping / AW;
 - 4. hybridisation / infertility / change in (wolf) gene pool / loss of wolf alleles / AW; [4]
- (d) 28(%);;
 allow one mark for number not rounded up or incorrect answer but correct idea regarding working

[Total: 9]