Biodiversity

Mark Scheme 3

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Biodiversity, classification and conservation
Sub Topic	Biodiversity
Booklet	Theory
Paper Type	Mark Scheme 3

Time Allowed:	71 minutes
Score $:$	$/ 59$
Percentage :	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a (i) two peaks;
dip in middle connected ; \mathbf{R} no intermediates shown
(ii) mates selected by size ;
few intermediates mate ;
intermediates selected against / extremes selected for ;
alleles for extreme phenotypes (more likely to be) passed on ; ora
AVP ; e.g. habitat for intermediate size no longer available / difference in predation
(iii) stabilising;
(b) sympatric / occurs in same location or allopatric / physical separation ; ref. different selection pressures ;
eventual reproductive isolation / no longer interbreed ;
(a (i) may be of use in the future;
(may produce) medicines / AW ;
resources (for humans) ;
e.g. wood for building / fibres for clothes / fuel / food / agriculture
maintain, gene pool / genetic diversity ;
to maintain stability in ecosystems ;
aesthetic reasons ;
(eco)tourism ;
(ii) dried / kept cool;
(b) (i) positive correlation / number of plant genera increases as rainfall increases; paired figs ; genera number \& rainfall in 2 countries showing the trend China does not fit the pattern ;
(ii) temperature ;
light intensity ; ignore sunlight / light / sun
day length ;
humidity ;
carbon dioxide concentration ;
wind ;

B

A

abiotic component $=\mathbf{C}$
ecological niche $=\quad \mathbf{F}$
$\left.\begin{array}{ll}\text { population }= & \text { E } \\ \text { community }= & \text { D }\end{array}\right\} ;$
(b) seaweed $=$ (primary) producer ; A first (trophic level)

limpet / P. vulgata	crab/C. maenas
primary consumer	secondary consumer
A 1° consumer	A 2° consumer
A second (trophic	A third (trophic level)

max 3 for energy losses
energy losses in
respiration ;
heat loss, qualified ; e.g. heat loss, from digestion / movement / metabolism
heat loss in respiration $=1$ mark
indigestible parts; A named, e.g. cellulose
inedible parts ;
excretion; A named excretory products
egestion; I waste
death, not eaten ;

4 (a (i) any one from; hot springs sulphur springs geysers geothermals marine vent volcanic area hot desert
(ii) 1. each bacterium grows at a different temperature (range);
2. (the heap) heats up ;
3. idea of when temperature kills one species of bacterium others are still active or as temperature increases process can continue ;
4. increased oxidation of heap ;
5. more productive / enables increased yield of gold ;
(b) (i) 1. A. ferrooxidans increases, oxidation of the ore / production of Fe^{3+};
2. little difference in effect $0-5$ days ;
3. greatest effect after 15 days ;
4. comparative figs for with and without A. ferrooxidans on a single day ; [3 max]
(ii) 1. cheaper (than other methods) ;
2. does not require energy input ;
3. does not require other chemicals to be purchased ;
4. does not require specialist equipment ;
5. can be done in situ ;
6. less labour needed ;
7. bacteria are self-replicating / AW ;
8. more environmentally friendly than other methods / no harmful emissions / AW ;
9. useful for extraction from, low grade ores / waste ;
(c) must have at least one D mark to score 4 marks

D1 both strains give similar rate with and without arsenic ions ;
D2 both strains are arsenic-resistant;
D3 strain 2, more active / higher oxidation rate, (than strain 1);
E4 arsenic acts as a selective, agent / pressure ;
E5 mutation / AW, produces resistant bacteria;
E6 resistant bacteria survive / ora ;
E7 resistant allele passed on ;
E8 frequency of allele increases (in population);
(a) north island

1. fewer / less abundant, hedgehogs allow increase (in both lapwing and redshank) ;
2. breeding pair figs for either bird for 1983 and 2000 or
\% change in population over that time for either bird ;
south island
3. presence of hedgehogs causes decrease (in both lapwing and redshank) ;
4. breeding pair figs for either bird for 1983 and 2000 or \% change in population over that time for either bird ;
(b) 1. (oystercatchers have) less competition ;
5. hedgehogs mostly eat lapwing and redshank eggs / hedgehogs don't eat oystercatcher eggs;
6. (oystercatcher) eggs are, too large / camouflaged / inaccessible / distasteful or
oystercatchers defend their, nests / eggs ;
(c) 1. idea of geographical isolation ;
7. no interbreeding / gene flow, between populations ;
8. mutations occur ;
9. different, selection pressures / environmental conditions ;
10. genetic change / AW ;
11. genetic drift ;
12. (eventually) reproductive isolation ;
13. allopatric speciation ;
[Total: 9]

6 (a) nitrogen fixation ;
J nitrification / oxidation ;
K denitrification / reduction ;
(b) provide source of, fixed nitrogen / usable nitrogen / organic nitrogen / amino acids / ammonia / ammonium ions / AW ; \mathbf{R} nitrate
ref. to protein production in legume ;
legume can, colonise / grow in, nitrogen / nitrate, deficient or poor soils ;
A not dependent on nitrate in soil
compete successfully with non-leguminous plants ;

animals in correct boxes ;
all five animals to hawk;
all animals except hawk to snake ;
(only) short-horned grasshopper to lava lizard xerophyte to short-horned grasshopper and land iguana $\}$; kelp to marine iguana
max 3 if all correct but one arrow head missing max 2 if arrow heads, mixed in incorrect direction/missing
(b) kelp and xerophytes ; allow ecf for next two mps if only one organism both, photosynthetic/autotrophic/fix carbon/AW ; A both have chlorophyll both are, at the start of the food web/at the first trophic level/the source of energy to rest of food web/AW ;
[Total: 7]

