Biodiversity

Mark Scheme 6

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Biodiversity, classification and conservation
Sub Topic	Biodiversity
Booklet	Theory
Paper Type	Mark Scheme 6

Time Allowed: 62 minutes

Score : /51

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a ignore reference to, first / third / fourth, trophic level

(primary) producer; secondary consumer; **A** second / 2°, consumer tertiary consumer; **A** third / 3°, consumer

[3]

- (b) 1 polar bear is, tertiary / quaternary consumer / top carnivore; A in fourth / fifth, trophic level
 - 2 feeds (only) on ringed seals;
 - 3 therefore limited, food / energy, supply;
 - 4 reference to ringed seals competing for food / food for seals shared with, others / named;
 - 5 reference to energy loss, within / between, trophic levels; **A** approx 90% loss from one trophic level to the next
 - any two examples of, energy / heat, loss in lower trophic levels; e.g. heat loss from, respiration / movement / digestion / excretion / egestion / indigestible parts / to decomposers / death but not eaten [max 4]
- (c) decrease in population of Arctic cod so higher trophic levels
 - 1 less, food / energy, (for consumers of cod / higher consumers);
 - 2 more competition for food;
 - 3 consumers / named consumers, of cod feed on other levels;
 - 4 starvation / decrease in population / extinction(s) (of other species);
 - 5 migration to areas where food is more plentiful;

lower trophic levels

- 6 increase in numbers of either, copepods / AW or arrow worms / AW;
- 7 (so) decrease in population of phytoplankton; only if mp 4 not scored
- 8 (so) increased competition with bivalve molluscs; only if mp 2 not scored

[max 3]

[Total: 10]

2 (a biotic and abiotic, components / AW;

A alternatives to biotic and abiotic

including commumity / AW for biotic and habitat / environment, for abiotic interacting / AW; idea of interactions between organisms or interactions between organisms and abiotic environment

in an identifiable / a defined / a self-contained area / place / unit / environment / AW;

A idea of place if qualified with correct example

[2]

(b) (i) grasses / shrubs / trees ;

A singular or plural

[1]

(ii) spider / predatory insect;

A singular or plural

[1]

- (c) energy loss at each level because of
 - 1 inedible parts / not all of the organism can be eaten;
 - 2 indigestible parts / not all is digested / egestion / faeces;
 - 3&4 energy / heat, losses from ;;

respiration R energy used for respiration

movement A energy used for movement

excretion

digestion

ignore energy not utilised by plants by e.g. reflection from leaves, etc.

[max 3]

- (d) following death of organisms or excretion of nitrogenous waste
 - 1 decomposers / saprotrophs / bacteria / fungi / scavengers / detritivores ;
 - 2 digest / breakdown / hydrolyse, protein / urea ;
 - 3 idea of assimilation in / growth of, decomposers / AW;
 - 4 deamination:
 - 5 production of ammonium (ions) / ammonification; A ammonia / NH₃
 - 6 nitrification described or denitrification described;

A formulae for ammonium ions, nitrite ions and nitrate ions but must be correct including signs

A nitrification described in terms of ammonium (ions) to nitrate (ions)

ignore nitrogen fixation as used correctly (N₂ to fixed N)

ignore uptake of nitrate ions or ammonium ions by plants

do not credit nitrification if any confusion with nitrogen fixation

[max 3]

[Total: 10]

3 (a) 'self contained' / 'self-sustaining' / determined by same physical feature / defined area;

community / all organisms / biotic factors, **and**, physical factors / abiotic factors / non-living factors / environment;

ref. to interaction between, organisms (and physical environment);

[2 max]

(b) award two marks for the correct answer (5.5%)

if no answer or incorrect answer or answer to too many decimal places, award one mark for working (88 / 1609)

88 / 1609 (× 100) 5.5 (%) ;;

[2]

- (c) these are points for producers to primary consumers accept ora for secondary consumers to tertiary consumers
 - 1 some parts inedible;
 - 2 indigestible / cannot digest cellulose or lignin;
 - 3 more material goes to decomposers (rather than consumers);
 - 4 plant material is less energy rich / animal flesh is more energy rich;
 - 5 manipulated data in support; e.g. ×2 to decomposers from producers
 0.8% (energy available to primary consumers divided by the energy available to plants)
 [3 max]
- (d) decomposers in recycling nitrogen protein → ammonia / ammonium ions = 1 mark
 - 1 convert protein → amino acids;
 - 2 deamination;
 - 3 urea / amino acids → ammonia / ammonium ions; A ammonification
 - make, ammonia / ammonium ions, available to nitrifying bacteria;
 A role of nitrifying bacteria / correctly named

[2 max]

[Total: 9]

 $_{A}$ (a) community

all populations / all organisms / all plants + animals (+ microorganisms); R all the species

in same, place / ecosystem / area / (common) habitat, (at same time);

[2 max]

(b) (i) award two marks for the correct answer (4.5%)

if no answer or incorrect answer or answer to too many decimal places, award one mark for working (2946/65 800 × 100)

2946 / 65 800 (× 100)

4.5 (%);;

[2 max]

(ii) energy available (from secondary consumers) is too small; \mathbf{R} no energy 2 kJ m⁻² (per week);

[2]

(iii) decomposers are, saprophytes / saprotrophs / saprobionts / bacteria / fungi;

plant matter provides little, protein / AW; ora A high carbon / low nitrogen plant matter / cellulose / lignin, not easy to decompose; ref. to organic matter / energy source, in plants not easy to obtain; supply of nitrogen is, limiting factor / limits growth of decomposers; (animal waste) protein / amino acids / urea, provides nitrogen; (animal wastes) provide materials for growth of, decomposers; further detail e.g. amino acids for proteins / membrane proteins / (hydrolytic) enzymes / other named protein(s) / nucleotides / nucleic acids;

more decomposers leads to faster decomposition (hence more energy flow); [3 max]

[Total: 9]

(a) one mark for each row

statement	hae	DNA	phospholipids	antibodies	
contains iron	✓	x		x	;
contains phosphate	х	✓	✓	х	
able to self- replicate	Х	✓	Х	х	;
hydrogen bonds stabilise the molecule	√	✓	х	✓	;
contains nitrogen	√	√	✓	✓	;

[5]

Question			Expected Answers	Marks
6	(a)		similar morphological, physiological, biochemical and behavioural features; (minimum 3 for mark) interbreed / reproduce; produce fertile offspring; occupy same niche; reproductively isolated;	2 max
	(b)		isolating mechanism – land barrier / AW; accept geographical isolation type of speciation – allopatric;	2
	(c)	1 2 3 4 5 6 7	geographical barriers / description; barrier to gene flow; no interbreeding / separate breeding populations / reproductively isolated; (gene) mutations occur / new alleles; different selection pressures / e.g. of selection pressure; ref. natural selection / description; change in allele frequency / OWTTE;	4
		8	develop different chromosome numbers / ref. polyploidy;	4 max

[Total: 8]