Genetic technology applied to medicine

Mark Scheme 3

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Genetic Technology		
Sub Topic	Genetic technology applied to medicine		
Booklet	Theory		
Paper Type	Mark Scheme 3		

Time Allowed: 63 minutes

Score : /52

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- **1 (a)** 1. rise in blood glucose concentration detected by β cells;
 - 2. (β cells) in, islets of Langerhans / pancreas
 - 3. insulin released into blood
 - 4. binds to receptors in cell surface membrane
 - 5. ref. to liver / muscle, cells
 - 6. increase in uptake of glucose (by cells)

(cell surface) membrane more permeable to glucose;

- 7. increase in use of glucose in respiration
- 8. (increase in) conversion of glucose to glycogen
- 9. blood glucose concentration falls
- 10. inhibits, glycogen / lipid / amino acid, breakdow

[max 6]

- (b) 1. (stick / kit) dipped in (early morning) urine sample;
 - 2. hCG / urine, moves up strip
 - 3. idea that hCG acts as antigen
 - 4. (mobile) antibody also bound to, indicator / gold
 - 5. (mobile) antibody in stick binds to hCG
 - 6. ref. to variable region (of antibody)
 - 7. ref. to specificity (of antibod
 - 8. ref. to monoclonal (antibody)

first window or region

- 9. second antibody is, immobilised / fixed
- 10. first antibody and hCG complex binds to second antibod
- 11. coloured band indicates pregnanc

second window or region

- 12. immobile antibody binds to mobile antibody-gold comple
- 13. second coloured band shows strip is workin

[max 9]

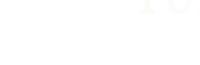
[Total: 15]

- 2 (a (i) 1. gene isolated;
 - 2. inserted into plasmid / AW
 - 3. correct ref. sticky ends
 - 4. plasmid taken up by E. coli / bacterium; R plasmid inserted into bacterium
 - 5. detail; e.g. use of restriction enzyme / cDNA produced

[3 max]

- (ii) 1. marker gene linked to gene for wanted protein;
 - 2. with promoter
 - 3. GFP gene is, transcribed / expressed
 - 4. producing GFP which fluoresces

[3 max]


- (b) disadvantage
 - 1. may not fluoresce very brightly / may be difficult to detect;

explanation

- 2. only a few molecules of GFP produced;
- 3. each enzyme molecule produces more fluorescent substance /

idea of enzymes can be re-used; [2 max]

[Total: 8]

- 3 (a 1 ref. sticky ends; 2 GATC and CTAG; complementary bases (pairing); 3 4 A to T and C to G;
 - 5 H-bonds (to sticky ends of plasmid)
 - (gaps in) sugar-phosphate backbones sealed by (DNA) ligase;
 - AVP; e.g. formation of phosphodiester bonds / ref. terminal transferase [4 max]
 - idea of identifying bacteria that, are transformed / have taken up plasmid / have (b) (i) 1 taken up ampicillin resistance gene;
 - 2 these bacteria have survived;
 - these bacteria may contain pBR322 or recombinant plasmid / plasmids taken up may not contain human insulin gene;
 - 4 other bacteria have been killed;

[3 max]

- (ii) (BamHI) breaks the tetracycline resistance gene; 1
 - (inserting human insulin gene) makes tetracycline resistance gene inactive;
 - colonies that are ampicillin-resistant but not tetracycline-resistant have taken up recombinant plasmid / insulin gene:
 - colonies that survive on, tetracycline / both ampicillin and tetracycline / plate T, have not taken up the recombinant plasmid / insulin gene; [3 max]
- (iii) Answer on Fig. 2.2 left hand colony on plate A;

[1]

- (c) (i) plasmids (easily) transferred between bacteria; 1
 - (bacteria of), same species / different species; 2
 - bacteria can acquire antibiotic resistance / renders antibiotic useless / AW; [2 max]
 - (ii) mark for gene and mark for how product detected
 - gene for β galactosidase;
 - 2 blue colour from X-gal medium;

- 3 gene for β glucuronidase (GUS);
- produces product that is easily stained blue;

- gene for, GFP / other fluorescent product;
 - R fluorescent / fluorescence, gene fluorescence detected when present;

6

- other gene;
- how detected;

[2 max]

[Total: 15]

- 4 (a) 1. caused by a single gene;
 - 2. caused by a recessive allele;
 - 3. delivery of, correct / dominant / normal, allele (could correct the condition);
 - 4. only need to get allele into a few cells;
 - 5. ease of access to affected area;
 - 6. serious so worth the risk;
 - 7. AVP; e.g. only targets eye / no surgery needed

[3 max]

- (b) 1. virus no longer able to cause infections;
 - 2. correct / dominant / normal, allele (of RPE65) added;
 - 3. promoter added;

[2 max]

- (c) 1. ref. to safety / not known if the technique might have side effects;
 - 2. rare condition;
 - 3. expense;
 - 4. AVP; e.g. trial to see if delivery method works

[2 max]

[Total: 7]

step	reason for step		
obtain copies of gene with sticky ends	the gene codes for the synthesis of insulin		
plasmid (used);	acts as a vector for the transfer of the gene into the host		
use restriction endonuclease enzyme	to produce 'sticky ends' or cut at specific, site / sequence;		
mix vector and gene	gene inserts into, vector / plasmid or forms recombinant DNA / AW;		
	A detail of complementary base pairing		
(use DNA) ligase ;	to seal the sugar-phosphate backbone		
insert, plasmid / vector, into host / E. coli / bacteria;	to obtain transformed host <i>E. coli</i> cells		
screen for, and obtain, successfully transformed cells	so only recombinant host cells cultured / AW;		
ref. batch / continuous, culture or fermenter or bacterial cloning / population growth;	to obtain large amounts of insulin for extraction and purification		

[7]

[Total: 7]

