Carbohydrates and Lipids

Mark Scheme 3

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Biological Molecules
Sub Topic	Carbohydrates and Lipids
Booklet	Theory
Paper Type	Mark Scheme 3

Time Allowed: 78 minutes

Score : /65

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) (i) assume answer is about glycogen

branched;

1–6, glycosidic, links / bonds;

not, coiled / helical; [2 max]

(ii) compact so large quantity can be stored;
 insoluble so no osmotic effect;
 glucose would lower water potential;
 A decrease, more negative
 (so) water would enter and cell volume would increase;
 (so) plant cells would need thicker cell walls / animal cells might burst;

[3 max]

(b) use annotations to help award these points

glucose reactive molecule;

- 1 oxygen bridge / glycosidic bond, broken;
- 2 at left hand end of chain;
- 3 water shown to be involved; A hydrolysis
- 4 free glucose molecule with -OH drawn on C1;
- 5 chain now ends with -OH on C4;

[3 max]

[Total: 8]

2	(a)	-OI	H is	below/A	W (-H) oı	n <u>carbon</u> (atom) 1;			
		A f	rom	sketch v	vith C1 la	belled				1
	(b)	(i)	(1-4	4) glycos	idic; R 1	, 6 glycosidic I	R oxygen br	idge		1
		(ii)	1	-OH on	free mole	ecule and end	of chain indi	cated;		
			2	water el	iminated	/removed/cond	ensation rea	action;		
			3	oxygen	bridge/gl	ycosidic bond o	drawn in cor	rect position	relative to	chain;
			4	betweer bond;	n C1 and	C4, must be la	belled eithe	r side of gly	cosidic	3
			M.F	P.2 and I	VI.P.4 cai	n be taken from	written acc	ount if no di	agram	
		(iii)) cell	lulose;						1
(c)		am	ylas	se breaks	s down/h	ydrolyses/acts	on, starch to	give malto	se/reducing	sugar;
		R	gluco	ose						
					se, denat emperatu	ured/active site re;	s disrupted	tertiary stru	cture change	ed, when
		ma	ltas	e does n	ot, break	down/act on/d	igest/hydrol	yse, starch;		
		refe	eren	ice to sp	ecificity/s	hape and fit/loo	ck and key	explained;		
		R r	no e	-s forme	d					
		tub	e F	is a <u>cont</u>	<u>:rol;</u>					
		tos	shov	v that the	ere is no	breakdown of s	starch witho	ut an <u>enzym</u>	<u>le</u>	4 max
										[Total 10]

3 (a) one mark per row

statement	starch	glycogen	cellulose
glycosidic bonds between monomers	1	1	1
monomer is β glucose	X	X	~
stored within chloroplasts	1	X	X
stored in muscle cells	x	1	x
exists in two forms - branched and	•	x	X
unbranched chain			

Do not penalise where <u>all X or \checkmark s are omitted</u> Do penalise each row if a mixture of X, \checkmark , and blanks

5

take samples at timed intervals e.g. every minute;

test with iodine solution / potassium iodide soln / or Benedicts;

determine the end point, eg continue until no blue / black (colour) /

yellow / brown appears or continue until brick red / colourless;

time taken to reach end point e.g. record the time;

ref to use of colorimeter (for precise results) (for both experiments)

or standards / green -> yellow -> orange -> red;

plot amount of starch remaining or glucose / maltose / reducing sugar

produced / transmission / absorption against time / sketch graph

with labelled axes;

ref to initial rate / rate calculation (e.g. ¹/_t or gradient from graph);

max 4

[Total 9]

(a)	(i)	A glycerol;		
		B fatty acid;		2
	(ii)	condensation / esterification / ester bond formation;		1
(b)		more energy released / stored per gram / unit / given mass; R. per mole		
		37 kJ v 17 kJ; A. (37-40 kJ) v (15-17 kJ) A. equivalent calorific values if calculated		
		fats are highly reduced;		
		more hydrogens / fewer oxygens / higher carbon to hydrogen ratio / more CH bonds;		
		release / yield more energy when respired / oxidised;	2 1	nax
(c)		20% or more above the recommended weight / mass for height / BMI / Body Mass Index / mass kg greater than 30;		
		(height in m) ²		
		A. within range (30-40)		1
(d)		diabetes;		
		<u>coronary</u> heart disease / atherosclerosis / cardiovascular disease stroke / AW;	e /	
		hypertension / high blood pressure;		
		cancer;		
		arthritis / joint problems;		
		hernia;		
		varicose veins;		
		gallstones;		
		increased risk during surgical operations;	2	max
		TEMISIKY ON LINITOTA	l :	8]

4

5 (a either diagram A or B below (or more detailed – e.g. all carbons and all bonds shown in diagram A);;

A CH₃0 for CH₂OH

I incorrectly numbered carbons

if incorrect (e.g. If one or more H missing from the ring in diagram A **or** if an H added to diagram B ring) allow one mark if:

- hexose ring with oxygen shown in correct position and
- CH₂OH group in correct position and

OH groups of ring in correct position.

[2]

Dr. Asher Rana

```
(b) (i) accept \underline{T. maritima} or \mathbf{T} and \underline{A.tumefaciens} or \mathbf{A} throughout for the \beta-glucosidases
         accept T if stated as B (as long as A is clearly mentioned)
         if only A or T stated, look for comparative phrase
         compare optimum temperatures
              optimum temperature, A lower (than T)/T higher (than A);
                   A maximum activity A is at a lower temperature
         2
              40^{\circ}C(A) \times 85^{\circ}C(T) / A lower by 45^{\circ}C;
              one difference in shape of curve before or after optimum;
                   e.g. after optimum, T does not have the less steep decrease after the initial
                       steep decrease (unlike A)
              before optimum, steepest increase for A is at the lower temperatures, (unlike T)
              compare activity below and above 55 °C
              below 55 °C, A has a higher activity / above 55 °C A has a lower activity, (than T);
         4
              A has a higher activity at low(er) temperatures and a lower activity at high(er)
                  temperatures ora
              comparative data to support mp 4;
         5
              compare temperature ranges of activity
              temperature range for activity is greater for A; ora
              (A) spans 80 \,^{\circ}\text{C} \,^{\circ}\text{V} (T) spans 65 \,^{\circ}\text{C}; A (A) 10-90 \,^{\circ}\text{C} \,^{\circ}\text{V} (T) 30-95 \,^{\circ}\text{C}
              compare L for both
         8
                has a lower, L/lowest temperature for (detectable) activity or ora
                   L is 20 °C lower for A; A 10 °C (A) v 30 °C (T);
              (at L), A (relative) activity = 35\%, T = 10\%;
         9
              compare H for both
         10 T has a higher, H/highest temperature for detectable activity or ora
                   H is 5 ^{\circ}C higher for T; A 95^{\circ} (T) v 90 ^{\circ}C (A);
         11 (at H) (relative) activity = 4%, T = 60%;
         if mp 10 data given to support mp 1, then CON = no marks for mp 1 or 10
                                                                                                 [max 4]
    (ii) 1
              primary structure, dictates, folding of the polypeptide chain/tertiary structure;
                  A idea that differences in primary structure leads to differences in,
                       secondary/tertiary, structure
                   A in terms of folding to give the active site
              similarity
         2
              same/(very) similar, (shape of) active site;
              active site (shape) is complementary to /AW, substrate / cellobiose; R matches
                  A ES complex forms
              differences
         4
              differences in, side-chain/R-group, interactions/AW;
              qualified; e.g. differences in, numbers/types, of bonds
                               differences in bonding to give different stabilities
                               R different bonds without further qualification
                               R peptide bond
         6
              suggestion for thermal stability of T; e.g. more bonds/more of a named bond type
              suggestion of how active site may work in different ways;
         7
```

[Total: 10]

[max 4]

mould fully round substrate

e.g. at lower temperatures, T induced fit mechanism may mean active site does not

6 **(a** one mark per row penalise once for stated ecf and then mark to max 4

	name of organelle	function		
A	cell surface membrane	control of movement of substances into and out of the cell		
В	nucleolus	production of, ribosomes / rRNA / tRNA ;		
С	mitochondrion A mitochondria	one from ; aerobic respiration ATP synthesis/ production / AW link reaction Krebs cycle oxidative phosphorylation R produces energy / ATP energy		
D	smooth endoplasmic reticulum R SER or smooth ER	lipid / sterol / cholesterol / steroid, synthesis ; ecf if SER, or Golgi is named organelle		
E	rough endoplasmic reticulum R RER or rough ER	one from; protein / polypeptide, synthesis translation modification of protein / described (e.g. folding, glycosylation) protein transport (to Golgi) ecf if RER		
F	Golgi (body / complex /apparatus)	one from; modification of protein glycosylation / described modification of lipid pack(ag)ing (of), protein / lipids production of, (Golgi / secretory) vesicles / lysosomes ignore synthesis of protein allow ecf if smooth endoplasmic reticulum		
G	lysosome or Golgi / secretory, vesicle	contains /storage of, hydrolytic / digestive, enzymes or if Golgi vesicle transfer / transport, of, protein / lipids;		

(b) max 3 if only structure or only explanations given

polysaccharide;

chains of $\alpha\text{-glucose}$ (residues) ; only need α once $\alpha\text{1--4}$ glycosidic bonds / links ;

branches;

(because of) α 1–6 glycosidic bonds; only need glycosidic once

idea that many 'ends' to easily, add / remove, glucose ;
compact / AW ;

insoluble;

will not affect, water potential / $\psi \; ; \; \; AW$ AVP ;

[max 4]

[Total: 10]

7 (a) electron microscope

accept ora for light microscope

- higher resolution / better resolving power;A high only if further detail confirms understanding
- 2 more easily able to distinguish between two (separate) points / AW; **A** if no comparative but mp 1 or relevant point in mp 3 gained
- 3 **AVP**; able to see points closer together than 200 nm **A** range 100-300 nm can see points up to 0.5 nm $(0.0005\,\mu\text{m})$ apart but LM is 200 nm $(0.2\,\mu\text{m})$ **A** range 0.2-1.0 nm

<u>electrons</u> have shorter wavelength (than light)

wavelength of electrons shorter than size of additional structures seen

[max 2]

- (b) each feature must be briefly qualified to gain max 3 penalise once if feature correct but not correctly qualified / or not qualified
 - 1 detail of mitochondria; e.g. inner membrane / crista(e)

double membrane

ribosomes (circular) DNA

2 detail of chloroplasts; e.g. double membrane

internal membranes

thylakoid(s) / grana / intergrana / lamellae

ribosomes

3 ribosomes, qualified; e.g. visible as small dots

scattered throughout / in cytoplasm

on RER

- 4 smooth endoplasmic reticulum / SER, qualified; e.g. no ribosomes / tubular / membranous
- 5 rough endoplasmic reticulum / RER, qualified; e.g. ribosomes / membranous / flattened cisternae;
- 4/5 endoplasmic reticulum / ER, qualified; e.g. smooth and rough / membranous / throughout cytoplasm
- 6 Golgi vesicles / secretory vesicles / lysosomes qualified;

e.g. forming from Golgi ref. exocytosis (not for lysosomes) seen as (small) sacs / AW

membranous

7 heterochromatin darker staining / euchromatin lighter staining;

A chromosomes seen as heterochromatin and euchromatin

- 8 nucleus has, nuclear envelope / two membranes;
- 9 nuclear pores in nuclear envelope;
- 10 <u>cell surface</u> membrane, qualified; e.g. to the inside of the cell wall
- 11 idea that (cell) membranes are visible, qualified; e.g. thin / round / within organelles /

named organelle [max 3]

(c) award two marks if correct answer is given, only one mark if μ m (units) given

× 1600;;

A in range of × 1400 to × 1800

 $(8\ 000\ /\ 5\ \mu m)$ 7\ 000\ /\ 5\ \mu m = (1400) 9\ 000\ /\ 5 = (1800)

award one mark if correctly measured and divided by $5 \mu m$ but incorrectly converted award one mark if incorrect measurement (e.g. whole cell) but correct formula used (i.e. divided by $5 \mu m$)

[2]

- (d) (i) 1 amylopectin branched / AW; ora
 - 2 amylose, spiral /spiralled / helix / helical; ora

R α – helix

R coiled

allow ecf from mps 1 and 2 to award mp 3

amylose (α) 1 – 4 linkages but 1 – 4 and 1 – 6 linkages in amylopectin / amylose has 1 – 4 linkages only;
 accept from clearly labelled diagram(s) [max 2]

(ii) any one valid; e.g.

- 1 for chlorophyll, structure / synthesis / formation / AW
- 2 for ATP functioning **A** required for energy transfers
- 3 for enzyme, functioning / cofactor
- 4 signalling ion / regulates carbon fixation
- 5 for, DNA / RNA, synthesis
- 6 stabilises, DNA / RNA, structure
- 7 required in, translation / joining, small and large subunits (of ribosomes)

[Total: 10]

[1]