Enzymes

Question Paper 6

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Enzymes		
Sub Topic	Enzymes		
Booklet	Theory		
Paper Type	Question Paper 6		

Time Allowed: 53 minutes

Score : /44

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Sucrase is the enzyme that catalyses the hydrolysis of sucrose. A student investigated the effect of substrate concentration on the activity of this enzyme.

Six test-tubes were set up each containing 10 cm³ of different concentrations of sucrose solutions. The test-tubes were left in a water bath at 30 °C for ten minutes.

After ten minutes, 5 cm³ of a sucrase solution at 30 °C was added to each test-tube and the reaction mixtures were stirred.

After a further five minutes, the temperature of the water-bath was raised to above 85 °C and the same volume of Benedict's solution added to each test-tube in turn. The student recorded the time when a green colour first became visible in each test-tube.

The concentrations used and the student's results are shown in Table 2.1.

Table 2.1

concentration of sucrose/gdm ⁻³	time taken for green colour to appear / s
5	278
10	145
15	95
20	75
50	47
100	45

(a)	Explain why the temperature of the water-bath was raised to above 85 °C.
	CHEMISTRYONLINE
	TITTTION

(b) Use the axes below to sketch a graph to show the effect of substrate concentration on the **rate of hydrolysis** of sucrose by sucrase.

[2]

[Total: 9]

	(c)	With reference to the student's results, describe and explain the effect of increasing substrate concentration on the rate of hydrolysis of sucrose by sucrase.
		CHEMISTRY ON LINE
		TIIITION
		[5]

2	This	s alle aks d	disease is a rare neuromuscular disease caused by an autosomal recessive allele. le prevents the production of an enzyme called acid alpha-glucosidase (AG), which own glycogen in muscle cells. Glycogen can build up in muscle cells causing damage lls. This damage leads to muscle weakness which gets worse with time.
	(a)	•	lain how two parents, both of whom produce normal amounts of AG, can produce a d with Pompe disease.
			[3]
	(b)		e form of treatment is enzyme replacement therapy where AG is given through ular injections.
		(i)	Suggest how AG may be manufactured.
			[1]
		(ii)	Name the hormone that stimulates the breakdown of glycogen in liver cells.
			[1]
		(iii)	State under what conditions glycogen would need to be broken down in liver or muscle cells.
			JERNIOLKY UNLAND
			[1]
	(c)		MN blood group system is based on the presence of glycoproteins M and N, on the ace membrane of red blood cells, which act as <i>antigens</i> .
		Stat	e what is meant by the term antigen.
			[1]

2

(d)					I blood cells is controlled by a of the MN blood group system
	Complete the genetic dia	gram to show	w how the	MN blood	group is inherited.
	parental phenotypes	MN	2	. Ν	MN
	parental genotypes				
	gametes				
	offspring genotypes				
	offspring phenotypes				[3]
(e)	Allele frequencies for L ^t world.	¹ and L^N vai	ry in diffe	erent huma	n populations throughout the
	Table 7.1 shows the L ^M a	and L^N allele	frequenc	es from five	e populations.
		Tak	ole 7.1		
			allele fre	quency / %	
	population	on	LM	LN	
	Canadian Ir	nuit	91	9	
	Egyptian	7	52	48	
	German		55	45	TATE
	Chinese	19 1 18	57	43	LINE
	Nigerian	TTTT	55	45	
	Discuss the data shown	in Table 7.1.			

.....[3]

- 3 Enzymes catalyse reactions in which substrate molecules are converted to products.
 - (a) There are two main approaches to investigation of the activity of an enzyme. State the two ways in which the activity of an enzyme can be found.

1		 	
	•••••	 	
2			
ے		 	
		 	[2]

Phosphatase enzymes remove phosphate groups from a wide range of organic compounds that contain phosphate. This makes available a supply of phosphate ions within cells. The reaction catalysed by phosphatase enzymes is as follows:

$$XPO_4 \longrightarrow X + PO_4^{3-}$$

X = an organic compound

The activity of phosphatase was measured at different values of pH by using nine different buffer solutions. The temperature was kept constant at 30 °C. The results are shown in Fig. 5.1.

Fig. 5.1

(b)	Using the data in Fig. 5.1, describe the effect of pH on the activity of phosphatase.
(c)	Explain why the activity of phosphatase is very low at pH 1.
	[4]
d)	Draw a curve on Fig. 5.1 to show the results you would expect if the experiment was repeated in exactly the same way but at a temperature of 20 °C. [2]
e)	Explain how competitive inhibitors affect the activity of enzymes, such as phosphatase.
	CHEMISTRYONLINE
	[3]

Dr. Asher Rana

Enz	yme	s are globular proteins that catalys	se specific reaction	S.	
(a)	Exp	lain how enzymes catalyse specif	ic reactions.		
		<u> </u>			[3]
(b)	the	striction enzymes cut DNA into fra sequence of bases. Fig. 4.1 sho ymes and a section of DNA cut by	ows the base sequ	uences cut by three restric	
		restriction enzyme			
		HindIII		A AGCTT	
		EcoRI		Ğ AATTC ↓	
		BamHI		G GATCC	
			sed	ction of DNA	
				GAATTCGTAA CTTAAGCATT	
			TACG ATGCTTAA	AATTCGTAA GCATT	
			Fig. 4.1		
	(i)	Identify the restriction enzyme th	at has cut the secti	ion of DNA shown in Fig. 4.	1.
					[1]
	(ii)	State the name given to the unp			has
					[1]

4

(c)	Human genes may be cloned by inserting lengths of DNA into bacteria. This may be carried out by inserting the DNA into a plasmid.
	Explain how lengths of DNA, cut by restriction enzymes, are inserted into plasmids.
	[3]
	[Total : 8]