Enzymes

Mark Scheme 1

Level	International A Level				
Subject	Biology				
Exam Board	CIE				
Topic	Enzymes				
Sub Topic	Enzymes				
Booklet	Theory				
Paper Type	Mark Scheme 1				

Time Allowed: 64 minutes

Score : /53

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a enzyme A uses 'lock and key' and enzyme B uses induced fit; A enzymes work by 'lock and key' and induced fit enzyme A/lock and key, (shape of) active site is complementary/AW, to (shape of) substrate (molecule); enzyme B/induced fit, has an active site that, moulds around/AW, the substrate:

[3]

- (b) (i) 1 P is β -pleated sheet, Q is α -helix; accept if P and Q are identified by a description
 - 2 determined by, coiling/folding/sequence, of amino acids/polypeptide;
 A primary structure for sequence of amino acids
 - 3 stabilised/held/AW, by hydrogen bonds;

 - **5** ref to, parallel/anti-parallel, nature of β -pleated sheet;

[max 3]

- (ii) 1 catalyses reaction between carbon dioxide and water to form <u>carbonic acid</u>;
 A correct, formulae/equation
 - 2 very fast reaction;
 - 3 in (cytoplasm of) red blood cell/erythrocyte;
 - 4 (so there are) hydrogen ions/protons, and hydrogencarbonate ions;
 - 5 hydrogen ions promotes oxyhaemoglobin dissociation/AW; e.g. reduces affinity of haemoglobin for oxygen/(oxy)haemoglobin gives up oxygen more readily
 - 6 increases supply of oxygen to (respiring) tissues;
 - 7 carbon dioxide is transported as hydrogencarbonate ions;
 - 8 in the plasma; A carbon dioxide diffuses from red blood cell to plasma
 - **9** AVP; e.g.

carbonic anhydrase catalyses reverse reaction in the lungs ref to hydrogencarbonate ions as buffer in plasma (as a consequence of reaction)

R buffering action of haemoglobin in red blood cells

[max 4]

[Total: 10]

```
2 (a) description
            enzyme mixed with sodium alginate (solution);
        1
        2
            placed in syringe;
        3
            added drop by drop;
        4
            to (solution of) calcium chloride;
        5
            beads (with enzyme) formed;
        6
            beads separated from calcium chloride;
        7
            wash with water;
        advantages
            (enzyme) can be re-used;
        9
            product, uncontaminated/enzyme-free;
        10 (so) purification not needed/less downstream processing;
            reduces cost;
        12 works at higher temperature/thermostable;
        13 works in changed pH;
        14 reaction, can be fast(er) / have high(er) yield;
                                                                                           [max 9]
   (b) 1
            glucose oxidase immobilised;
        2
            stuck onto, pad/ (dip)stick;
        3
            dip stick lowered into, body fluid/blood/urine;
        4
            oxidises glucose (in body fluid);
        5
            (changes glucose to) gluconic acid;
                                                    A gluconolactone
        6
            hydrogen peroxide produced;
        7
            (peroxide) reacts with chromogen (on pad);
        8
            produces, colour/named colour;
        9
            darkness of colour/range of colours, is proportional to concentration of glucose;
        10 AVP; e.g. peroxidases catalyse reaction/ref. to importance of fixed time
```

[max 6]

Dr. Asher Rana

to observe colour change

3 (a any one valid; e.g.(first) appearance of (brown) colo use of, colour standards/colour charts use of colorimeter time-lapse photography/video

(b) allow catechol for substrate throughout rate of reaction 0 au, no substrate to act on / AW;

at substrate concentrations lower than 5mM substrate (concentration) is limiting (factor in rate of reaction); presence of free active sites/enzyme is in excess; few collisions between enzyme and substrate; rate increases with substrate concentration as more, active sites can be occupied/E-S complexes can form; one data quote to support response V_{max} reached/rate becomes maximum, at 4.5–5 mM substrate concentration;

rate constant/levels out/AW, from 4.5–5 mmol substrate concentration;

at substrate concentrations greater than 5 mM
enzyme (concentration) becomes limiting (factor);
all active sites, saturated/occupied;
(so) further increase in substrate concentation does not increase rate; [max 5]

- (c) (i) curve always lower than that with no inhibitor; *must be similar shape* curve reaches the maximum; A curve heading to maximum [2]
 - (ii) PHBA/ inhibitor, similar shape to, substrate/ catechol; (so) binds to active site; blocks access to substrate/fewer (successful) enzyme-substrate collisions; reduces rate of, reaction/conversion of substrate to product; AVP;

e.g. inhibitor has a greater effect on rate at lower substrate concentratio V_{max} reached at higher substrate concentrations inhibitor forms same interactions with R-groups in active site [max 2]

(d) enzymes work in a limited pH range / either side of optimum pH rate decreases; (acid so) presence of H⁺ ions, partially denatures / denatures (some), enzymes; further detail; e.g. ref. to breaking ionic or hyrdrogen bonds change of active site shape means substrate can no longer fit; AVP; e.g. ref. to antioxidant effect of, lemon juice / citric acid / vitamin C

[Total: 12]

[max 2]

4 (a (i) <u>hydrolysis</u> / <u>hydrolysing</u>; I catabolic / digestive R hydrolsis

[1]

(ii) to stop the reaction; R 'stop it working' by denaturing, the enzyme / sucrase; R incorrect context A 'change shape of active site' to make the Benedict's solution, react / AW;

[2]

(b) description to max 2

rate increases to a, maximum / plateau; **A** 'levels off' / remains constant *idea that* increase in rate slows; 11.5 (arbitrary units / au) at 80 - 90, g dm⁻³; **A** range 11.4 – 11.6

explanation to max 4 - accept ora where appropriate

substrate concentration is limiting (factor);

(at low concentration) may be given in terms of increasing concentration few collisions between enzyme and substrate; few, enzyme-substrate / E-S, complexes formed; active sites unoccupied;

(at high concentration / >80 g dm⁻³) enzyme concentration is limiting (factor); **A** 'not enough enzyme for substrate to bind to' maximum number of enzyme-substrate complexes formed; active sites, saturated / always occupied; **A** ref to V_{max}

[max 5]

[Total: 8]

- 5 (a) 1. (either feature) reduces water loss by, transpiration / evaporation;
 - 2. reduction in, number of stomata / surface area, (for, transpiration / evaporation);
 - 3. rolling leaves traps moist air;
 - 4. idea of reduced, diffusion / water potential, gradient (between leaf and trapped air);

[3 max]

- (b) (i) cooked protein more digestible than raw protein; use of figures; accept any named comparison between cooked and raw [2]
 - (ii) cooked
 - 1. cooking breaks cross-links (in kaffirin); A bonds
 - 2. ref. to named bond; e.g. hydrogen / ionic / disulphide / covalent
 - 3. tertiary / 3D / quaternary, structure disrupted / AW;
 - 4. protease can now bind, more / easier, with polypeptides;
 - 5. enzyme-substrate complexes can form;
 - 6. so more protein is digested to amino acids;

[3 max]

[Total: 8]

