Enzymes

Mark Scheme 9

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Enzymes		
Sub Topic	Enzymes		
Booklet	Theory		
Paper Type	Mark Scheme 9		

Time Allowed: 78 minutes

Score : /65

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	1. 2.	only three colours (for positive reactions) / only a small range; no measurement of actual concentration / no numerical value measured	; [2]
	(b)	(i)	peroxidase;	[1]
		(ii) (iii)	 (catalyses breakdown of hydrogen peroxide) to produce oxygen; chromogen, oxidised by / reacts with, (oxygen); produces range of colours; more, peroxide / oxygen produced, = greater change / darker colour to keep out, proteins / enzymes / polymer / named large molecule; R large molecules unqualified to prevent interference (to reactions); to prevent loss of, enzyme / chromogen; 	; [2 max]
			4. so still allowing reaction to occur;	[2 max]
	(c)	(i)	 B has diabetes and A does not; A's, values / peak, lower because he secretes insulin or B's, values / peak, higher because, no / little, insulin; in A (insulin affects), liver / muscle, cells; increase in glucose uptake / increase in permeability of membranes increase in use of glucose in respiration; (more) glucose converted to glycogen; in B because cells unresponsive to insulin; accept quoted values for lower and higher in mark point 2 	(to glucose) ; [4 max]
		(ii)	(the concentration of blood glucose), above which some glucose appea	
	1	(iii)	AW; 1. (at first), glucose reabsorbed by proximal convoluted tubule; 2. ref. co transported with Na ⁺ / facilitated diffusion / protein carrier; 3. above 180mg (100cm ⁻³ glucose in blood) no further reabsorption;	[1]
			4. because carriers (in PCT) saturated / AW;	[3 max]

[Total: 15]

2 (a (i) β glucose; [1]

(ii) glycosidic; [1]

(b) many hydrogen bonds within the molecule; idea of parallel chains / AW; hydrogen bonds between cellulose molecules; to form microfibrils; held together by more hydrogen bonds to form fibres;

[2 max]

(c)

function	letter from Fig. 5.1
organelle that contains DNA	Н
structure that transports cell wall material to the cell surface membrane	А
site of transcription	Н
site of ribosome synthesis	J
site of photosynthesis	D

[4]

(d) polypeptide / protein, in (cisternae of) RER; to Golgi (apparatus / AW); modification / glycosylation / packaging; vesicle(s) formed / transport in vesicle; A vacuole membrane of vesicle fuses with cell surface membrane; exocytosis / described;

[max 3]

[Total: 11]

3	(a)	(i)	so that, the bacteria were not killed / enzymes not denatured ;			
		(ii)	bacteria put into (solution of) sodium alginate			
			2. place mixture in syringe			
			3. add drops of mixture to calcium chloride solution			
			4. calcium ions replace sodium ions (to form beads)			
			5. bacteria trapped in beads	[3 max]		
	(b)	(i)	note comparison between blue line and black line ignore references to red line - agar			
			1. both increase up to, 18 / 24, hours			
			2. both similar, initially / up to 18 hours			
			3. biggest difference at 24 hours / rate of increase for immobilis cells greater than free cells between 18 and 24 hours;			
			4. after 24 hours immobilised cells rate decreases while free cel rate continues to increase <u>or</u> after 39 hours free cells rate is greater than immobilised cells rate;			
			5. free cells final concentration is still lower than highest val attained by immobilised cells ;			
			6. use of comparative figures	[4 max]		
		(ii)	1. (could be) less surface area (t volume ratio) in cubes than beads ;			
			2. (could be) a greater diffusion distance to centre of cubes th beads;			
			3. agar may be less permeable (to substrate) than alginate			
			4. something in agar may inhibit bacterial enzymes			
			5. some protease <u>adsorb</u> by agar ;			

(c)	(i)	82.14 / 82.1 / 82 (%) ; ;	
		allow one mark for suitable working if incorrect answer	[2]
	(ii)	1. can use alginate (beads) many times	
		2. (reduces cost of), materials / energy / labour	
		3. fewer bacterial cultures needed / less time spent immobilisi bacteria ;	
		4. more protease produced (per hour) (using alginate)	
		5. can run fermentation for longer time	
		6. less time wasted between fermentations	
		answers must imply comparison	[3 max]
			[Total:15]


```
(a) (i) tertiary (structure); A 3°
                                                                                                  [1]
    (ii) secondary (structure); \mathbf{A} 2^{\circ}, alpha / \alpha, helix
                                                                                                  [1]
(b) active site; A catalytic site
                                                                                                  [1]
                     CGU
                                 UGC / UGU
                                                   GAA
(c) (i) mRNA
                                 ACG / ACA
                     GCA
                                                   CTT
         DNA
                                                                                                  [3]
    (ii) many / several / more than one, triplet for each amino acid; A codon
         an e.g. from Table 3.1;
         degenerate code / description e.g. 64 possible triplets for 20 amino acids; A codons
         AVP; e.g. may be an intron in this region, different nucleotides at the beginning
             (signal sequence)
                                                                                             [2 max]
(d) (i) reject references to time e.g. rapid, slowly
         as the concentration of, enzyme / lysozyme, increases the percentage of
             bacteria surviving decreases / AW; R if only 1 named
         steep, decline / decrease, 0 to 10 / first two concentrations, for E. coli;
             A large percentage difference in E.coli surviving at 0 to 10 / first two concentrations
         less steep / more gradual, decline / decrease, from 10 to 150 for E. coli;
         decline / decrease, shallower / less steep from 0 - ,40 / 60 / 70 / 80, for S. aureus;
             A small percentage difference in S. aureus surviving from 0 – , 60 / 70 / 80
         decline / decrease, more significant / steeper / more abrupt, from 60 / 70 / 80, up to 150
             for S. aureus; A large percentage difference in S.aureus surviving from 60 / 70 / 80,
             up to 150
         always more S. aureus than E. coli; ora
         all bacteria survive with no lysozyme:
         lysozyme is more effective, at killing / against, E. coli / AW; A ora
         all E. coli killed, at 150 pmol dm<sup>-3</sup> (of lysozyme) / at highest concentration;
         comparative data quote; both axes, both curves
         comparative data quote; penalise once for lack of units in both
                                                                                            [4 max]
    (ii) different, polysaccharides / peptidoglycans, in cell walls;
        S. aure , does not have / has less, polysaccharides / peptidoglycans, in cell wall;
        ref to shape of active site:
        ref to shape of, polysaccharide / peptidoglycan (to fit into active site);
        S. aure has a capsule / ora; A protective lipids
        AVP; e.g. S. aureus produces inhibitor
                                                                                            [2 max]
                                                                                        [Total: 14]
```

Question Expected Answers

Marks

5 (a) one mark per row

statement	starch	glycogen	cellulose
glycosidic bonds between monomers	1	1	1
monomer is β glucose	X	X	1
stored within chloroplasts	1	X	X
stored in muscle cells	X	1	×
exists in two forms -	1	X	×
branched and unbranched chain			

Do not penalise where <u>all X or \checkmark s are omitted</u> Do penalise each row if a mixture of X, \checkmark , and blanks

5

take samples at timed intervals e.g. every minute;

test with iodine solution / potassium iodide soln / or Benedicts;

determine the end point, eg continue until no blue / black (colour) /

yellow / brown appears or continue until brick red / colourless;

time taken to reach end point e.g. record the time;

ref to use of colorimeter (for precise results) (for both experiments)

or standards / green -> yellow -> orange -> red;

plot amount of starch remaining or glucose / maltose / reducing sugar

produced / transmission / absorption against time / sketch graph

with labelled axes;

ref to initial rate / rate calculation (e.g. ¹/_t or gradient from graph);

max 4

[Total 9]