Movement of substances Mark Scheme 1

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Cell Membranes and Transport
Sub Topic	Movement of substances
Booklet	Theory
Paper Type	Mark Scheme 1

Time Allowed:	70 minutes	
Score		$/ 58$
Percentage :	$/ 100$	

Grade Boundaries:

A^{*}	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a either diagram A or B below (or more detailed - e.g. all carbons and all bonds shown in diagram A) ;;
A $\mathrm{CH}_{3} \mathrm{O}$ for $\mathrm{CH}_{2} \mathrm{OH}$
I incorrectly numbered carbons

if incorrect (e.g. If one or more H missing from the ring in diagram A or if an H added to diagram B ring) allow one mark if:

- hexose ring with oxygen shown in correct position and
- $\mathrm{CH}_{2} \mathrm{OH}$ group in correct position and

OH groups of ring in correct position.
(b) (i) accept T. maritima or \mathbf{T} and A.tumefaciens or \mathbf{A} throughout for the β-glucosidases accept \boldsymbol{T} if stated as \boldsymbol{B} (as long as \boldsymbol{A} is clearly mentioned)
if only \boldsymbol{A} or \boldsymbol{T} stated, look for comparative phrase
compare optimum temperatures
1 optimum temperature, A lower (than \mathbf{T})/T higher (than A);
A maximum activity \mathbf{A} is at a lower temperature
$240^{\circ} \mathrm{C}(\mathbf{A})$ v $85^{\circ} \mathrm{C}(\mathbf{T}) / \mathbf{A}$ lower by $45^{\circ} \mathrm{C}$;
3 one difference in shape of curve before or after optimum ;
e.g. after optimum, \mathbf{T} does not have the less steep decrease after the initial steep decrease (unlike A)
before optimum, steepest increase for \mathbf{A} is at the lower temperatures, (unlike \mathbf{T})
compare activity below and above $55^{\circ} \mathrm{C}$
4 below $55^{\circ} \mathrm{C}, \mathbf{A}$ has a higher activity/ above $55^{\circ} \mathrm{C} \mathbf{A}$ has a lower activity, (than T); ora
A has a higher activity at low(er) temperatures and a lower activity at high(er) temperatures ora
5 comparative data to support mp 4 ;
compare temperature ranges of activity
6 temperature range for activity is greater for A ; ora
7 (A) spans $80^{\circ} \mathrm{C} v(\mathrm{~T})$ spans $65^{\circ} \mathrm{C}$; $\mathbf{A}(\mathbf{A}) 10-90^{\circ} \mathrm{C} v(\mathbf{T}) 30-95^{\circ} \mathrm{C}$
compare L for both
8 has a lower, L / lowest temperature for (detectable) activity or ora
L is $20^{\circ} \mathrm{C}$ lower for $\mathbf{A} ; \mathbf{A} 10^{\circ} \mathrm{C}(\mathbf{A}) v 30^{\circ} \mathrm{C}(\mathbf{T})$;
9 (at L), A (relative) activity $=35 \%, \mathbf{T}=10 \%$;
compare \boldsymbol{H} for both
10 T has a higher, H / highest temperature for detectable activity or ora \mathbf{H} is $5^{\circ} \mathrm{C}$ higher for $\mathbf{T} ; \mathbf{A} 95^{\circ}(\mathbf{T})$ v $90^{\circ} \mathrm{C}(\mathbf{A})$;
11 (at \mathbf{H}) (relative) activity $=4 \%, \mathbf{T}=60 \%$;
if $m p 10$ data given to support $m p 1$, then $C O N=$ no marks for $m p 1$ or 10
(ii) 1 primary structure, dictates, folding of the polypeptide chain/tertiary structure ;

A idea that differences in primary structure leads to differences in, secondary/tertiary, structure
A in terms of folding to give the active site
similarity
2 same/(very) similar, (shape of) active site ;
3 active site (shape) is complementary to/AW, substrate/cellobiose ; \mathbf{R} matches
A ES complex forms
differences
4 differences in, side-chain/R-group, interactions/AW ;
5 qualified; e.g. differences in, numbers/types, of bonds differences in bonding to give different stabilities
\mathbf{R} different bonds without further qualification
R peptide bond
6 suggestion for thermal stability of T;e.g. more bonds/more of a named bond type
7 suggestion of how active site may work in different ways;
e.g. at lower temperatures, T induced fit mechanism may mean active site does not
mould fully round substrate
[max 4]

2 (a phospholipid (and protein) molecules, move about/diffuse/AW; protein (molecules), scattered/AW ; A different proteins present
(b) similarity to max 1
(contains) phospholipid (bilayer); A detail of orientation of phospholipid
A lipid bilayer
(contains) protein ;
difference (look for ora)
(Davson Danielli) layer(s) of protein/protein only on outside ;
(fluid mosaic) ref. to proteins, in different locations discrete/different types/named or described;
(fluid mosaic) presence of cholesterol (molecules) ;
(c) 1 requirement for, energy/ATP ; R ATP energy

2 uses, carrier/transport, protein ; A pump
3 conformational change (of carrier protein) ; AW
4 moving against a concentration gradient ; A low to high concentration
5 specific, binding site ; A ref. to specificity to substance moved across
to max 2
(d) 1 loss of, tertiary structure/quaternary structure/secondary structure ;

A loss of shape of active site in correct context
2 loss of globular, shape/structure/form ;
3 breakage of, ionic/hydrogen/hydrophobic, bonds/interactions;
to max 2
4 loss of function of (membrane) proteins ;
5/6 detail; ;
e.g. transport of, polar molecules/ions, impaired AW
loss of cell to cell adhesion unable to receive cell signals loss of enzyme function
7 ref. to membranes, become leaky/lose partially permeable nature ;
A cannot regulate, entry/ exit, substances
8 disrupt interaction between protein and phospholipid bilayer/described ;

3 (a one mark each column
transport mechanism
$\left.\begin{array}{ll}\text { (passive / simple) diffusion } & \mathbf{R} \text { facilitated diffusion } \\ \text { endocytosis / phagocytosis } & \mathbf{R} \text { bulk transport }\end{array}\right\}$;
example
glucose / amino acids / ions / named ion A polar / hydrophilic, molecules accept any relevant water
(b) ignore correct examples of materials if given in addition to transport mechanism \boldsymbol{R} if incorrect examples given
facilitated diffusion ;
active, transport / uptake ; A sodium-potassium pump (mechanism)
(passive / simple) diffusion or osmosis ;
endocytosis or exocytosis ;
A (for endocytosis) pinocytosis / micropinocytosis / phagocytosis
(a water moves down water potential gradient; A high(er) to low(er) water potential / less negative to more negative water potential apoplast pathway / through cell walls ;
symplast pathway / through, plasmodesmata / cytoplasm ;
evaporation ;
from spongy mesophyll cell walls ;
into (substomatal / intercellular) air space ;
diffusion of water vapour ; A diffusion of water if evaporation used in correct context elsewhere
through stomata ;
(b) explanation must correctly relate to structure before marks can be awarded any three from the following six pairs either
cellulose, cell wall / lining ;
allows adhesion of water ;
or
thick (cellulose) cell wall ;
prevents collapse / idea of providing support (under tension) ;

either

lignin ;
waterproofing / prevents water loss ;
or
lignin; A rings / spirals / thickening / AW (of walls)
prevents collapse / idea of providing support (under tension) ;
no cytoplasm / lack of contents / hollow / empty lumen; R dead
less resistance to / unimpeded / uninterrupted / unhindered / ease of / AW, flow / AW ;
A greater volume per unit time / faster rate \mathbf{R} continuous, smooth
lack of end walls / continuous tube ;
less resistance to / unimpeded / uninterrupted / unhindered / ease of / AW, flow / AW ;
R continuous, smooth
pits / pores; \mathbf{R} holes
lateral movement / movement around air bubbles / supplies (water) to (surrounding), cells / tissues ;
wide / large diameter / large lumen ;
so large volume of water can be transported ;
(b) K permits movement of, ions/(small) water soluble molecules/ charged/polar/hydrophilic/any e.g. ;
facilitated diffusion/active transport ;
[max. 1]

L cell recognition/(surface) antigen/receptor/cell adhesion/cell marker/ binding site ; forms hydrogen bonds with water to stabilize membrane structure ;
[max. 1]
M barrier to, water soluble compounds/ions;
allows passage of lipid soluble substances / named e.g.;
ref hydrophobic interactions with integral proteins ;
ref structure of fatty acid tails maintains fluidity ;
[max. 1]
\mathbf{N} regulates, fluidity/stability;
storage ;
restricts movement of phospholipids ; influences permeability of membrane ;
[max. 1]
(c) idea of large molecule; polar ;
water soluble/not lipid soluble; A hydrophilic
$\overline{\text { A not }}$ able to pass through phospholipid bilayer / AW
[max. 2]
(d) facilitated diffusion because the rate of uptake increases with increasing glucose concentration, up to a plateau/constant rate; A figs to explain because no more proteins available/all proteins in use ;
if passive diffusion rate would continue to rise ; cannot be active transport as rate would be independent of concentration (except at low concentration) ;
(e) (active transport) uses, energy/ATP, to move (substance) against a concentration gradient ; ora
[Total: 10]

Question Expected Answers

6 (a) (i) X to xylem vessel;
\mathbf{S} to phloem sieve tube element; \mathbf{R} companion cell
\mathbf{E} to lower epidermal cell; (including guard cells) \mathbf{R} cuticle
D to palisade mesophyll cell;
(ii) Award 1 mark for correct working;

Award 1 mark for correct answer;
Expect 120/0.5 $\mathbf{=} \mathbf{2 4 0}$
A 119-121/0.5=238-242 or any working that gives the correct answer \mathbf{R} all others,
(b) sucrose; amino acids; A two named amino acids for two marks
(c) lower/more negative, water potential; A ref to water potential gradient/xylem has a higher water potential \mathbf{R} less water potential
(of) spongy mesophyll cell/tissue; \mathbf{R} leaf cells
large surface area/many cell walls(of spongy mesophyll cells);
(moves through) through cell walls/surfaces; \mathbf{R} ref to appoplast/symplast
evaporation of water;
from spongy mesophyll cell walls;
into (substomatal/intercellular) air space;
diffusion of water vapour;
through stomata;

