Movement of substances

Mark Scheme 2

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Cell Membranes and Transport
Sub Topic	Movement of substances
Booklet	Theory
Paper Type	Mark Scheme 2

Time Allowed: 74 minutes

Score : /61

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a (i) transcription <u>first</u> process and exocytosis <u>final</u> process; correct order for remaining three processes (3, 4, 2); accept words and mixture of words and letters

[2]

(ii)

. , A / D

Α;

C

D;

events	order of events	cell location (letter)
exocytosis	5	
protein modification	3	A / D A+D
secretory vesicle formation	4	
transcription	1	
translation	2	

cell membrane;

Golgi and/or RER,

Golgi;

nucleus,

RER;

[3]

(b) 1 vesicle / vacuole, moves towards, cell, surface / membrane;

A plasma membrane R if lysosome

- 2 fusion / described, of vesicle with membrane; R attach / bind / combine
- 3 ref. to (fluid nature of) phospholipids:
- 4 contents / AW, secreted / released / exported / removed / emptied / excreted;

A waste material / digested material

5 active process / energy-requiring / ATP used / AW;

R 'active transport' R endocytosis

[max 3]

(c) (i) AUG;

- (ii) 1 secondary structure / α -helix / β -(pleated) sheet ;
 - 2 tertiary structure / description / folding / complex 3D shape;
 - 3 formation of named bond(s); R if peptide bond in list
 - 4 quaternary structure / description (e.g. assembly of polypeptides);
 - 5 glycosylation / formation of glycoproteins / addition of carbohydrate(s) or sugar(s);
 R hydrocarbon chain
 - 6 addition of, non-protein portion(s) / prosthetic group(s) / named example;

A haem / iron / Fe / copper / Cu / magnesium / Mg / AW

- 7 removal of some amino acids; R one amino acid
- 8 polypeptide(s) cut into two or more pieces;
- **9** AVP; e.g. ref. to exposure to water molecules and folding

R ref. to amino acids coded for by stop codons

[max 2]

[Total: 11]

2	(a	G to cells in centre;		
		R to	surrounding white area;	[2]
	(b)	ADH	1 ;	[1]
	(c)	(i)	(too) large / MM > 68 000 ;	
			to pass through <u>basement</u> membrane; R gaps / wall	[2]
		(ii)	reabsorbed;	
			in proximal convoluted tubule;	[2]
		(iii)	1. more urea in urine than in filtrate / ora; A comparative figs	
			2. water is reabsorbe ;	
			3. in, distal convoluted tubule / collecting duc;	
			4. mo_ urea stays in urine ;	
			5. other substances are reabsorbe ;	[2 max]
				[Total:9]

Question			Expected Answers	Marks
3	(a)		control / maintain, water / solute, concentration / potential; of, body fluids / internal environment / cells;	2
	(b)	1 2 3 4 5 6 7 8 9 10	B / C , lower ψ than A ; accept C lower ψ than B accept ψ gets more negative as fluid moves down descending limb comparative figs; water moves out by, diffusion / osmosis; into, medulla tissue / tissue fluid; D / E , higher ψ than C ; accept ψ gets less negative as fluid moves up ascending limb comparative figs; Na ⁺ / CI, move out; into, medulla tissue / tissue fluid; by active transport; A and E same ψ / AW; penalise once for no units allow either 4 or 8	5 max
	(c)		receptor – hypothalamus ; effector – pituitary gland / cells or walls of collecting duct ; R anterior pituitary	2

[Total: 9]

4 (a)

			1		
structural feature	triglyceride	phospholipid			
phosphate (group)/contains phosphorus	×	✓			
nitrogen	×	✓			
charged/polar	×	✓			
(number of) fatty acids	3	2			
number of ester bonds	3	2			
number of phosphate ester bonds	0				
award one mark for any of the following comparisons					
number of double bonds (in hydrocarbon chain)	0	1			
number of saturated fatty acids / ORA	3	1	alternatives alternatives		
presence of double bonds	×	✓			
presence of unsaturated fatty acids	×	✓	J 		

[max 2]

- (b) answer may be phrased in the context of amylase/trypsin ignore anything before Golgi, e.g. shuttle vesicles from RER
 - 1 vesicles, form from/'pinch off', Golgi (apparatus/body/complex);
 - 2 vesicles moves, through cytoplasm/to cell (surface) or plasma membrane;
 - 3 role of cytoskeleton/microtubules in movement of vesicles;
 - 4 energy/ATP, is required (movement of vesicles/fusion with membrane);
 - vesicle fuses with/AW, cell (surface)/plasma, membrane;I bind/attachA join/merge/becomes part of
 - 6 exocytosis/vesicle 'opens up' so that enzyme molecules are released;
 - 7 ref to fluid nature of, membranes/phospholipid bilayer, that makes this possible;

[max 4]

(c)

role of water	property of water	
solvent for glucose and ions	dipolar/polar; A description of polarity of water	
transport in the xylem	hydrogen bonding; I cohesion/adhesion	
helps to decrease body temperature in humans	high latent heat of vapourisation/ high specific heat (capacity)/ high enthalpy heat of vapourisation/ lots of energy required for evaporation;	

[3]

[Total: 9]

(a P – moves, polar substances/hydrophilic molecules/ions, through membrane/in or out (of cells); A facilitated diffusion/active transport/described **Q** – receptor/recognition site/cell recognition/binding site; A cell adhesion/'receives' named signal A stabilises membrane (as forms hydrogen bonds with water) **R** – regulates/AW, fluidity of, membrane/(phospholipid) bilayer; A contributes to hydrophobic layer/impermeability to ions [3] **(b)** 7.0 nm; [1] (c) fluid idea of phospholipid (and protein) molecules, move about/diffuse (within their monolayer); mosaic to max 1 protein (molecules), interspersed/scattered/not a complete layer/AW; different/AW, proteins (molecules): [max 2] (d) 1 water molecules are polar; R hydrophilic/charged 2 idea that few polar molecules pass through the phospholipid (bilayer); ora for non-polar molecules A none pass/repelled 3 core of membrane/phospholipid tails, are hydrophobic; A hydrophobic core 4 channels (through aquaporins), are hydrophilic; A core of channel proteins/described as R-groups of amino acids 5 (aguaporins) increase permeability of membrane to water; 6 example: e.g. root hairs/small intestine epithelium/nephron 7 role of water in a cell; e.g. solvent/reactant/reaction medium/turgidity or support in plant cell ignore references to osmosis/bursting/crenation/regulation 31

[Total: 9]

```
explanation of resolution as ability to differentiate between two points (close together);
    2
         ref. to (internal) membranes (of A and B) which cannot be seen in LM;
    3
             A named membranes e.g. cristae, grana
         AVP; e.g.
         (resolution of) EM is 0.5 nm (0.0005\mum) and LM is 200 nm (0.2\mum)
             A 0.5 to 1 nm (0.001μm)
         resolution is equal to half the wavelength (of medium used)
         ref. to shorter / AW, wavelength (of electrons) / ora (must have a comparison)
         ref. to, width of membranes / distance apart of membranes, e.g. width of membranes
             in A and B is 7 nm (+/-1)
                                                                                         [max 3]
(b) C - rough endoplasmic reticulum; penalise once only for ER instead of endoplasmic
    reticulum
    D - ribosome ; A ribosomes ignore 70S
    E – smooth endoplasmic reticulum; A smooth ER if full term used for C
    award one mark if E = rough endoplasmic reticulum and
    C = smooth endoplasmic reticulum
                                                                                              [3]
(c) any one relevant e.g.
    store of / holds, cell sap; R if contains organelles
    store of / holds, water / ions / named ion(s) / minerals / salts / pigments / (named) sugars;
        R substances / molecules
        R storage unqualified
    pushes chloroplast to edge of cell;
    gives, turgidity / turgor pressure / hydrostatic pressure / support / AW;
        A makes, firm / rigid
        A controls / maintains, turgidity
        R gives shape / strengthen
    store of / holds, waste (products)
```

electron microscope has, higher / AW, resolution (than LM) / ora;

(a

R reactions occur in vacuole, unqualified

[1]

(d) no marks for identifying **F** and **G** if only **F** or **G** described max 3

if **F** and **G** incorrectly identified, accept mark points correctly linked to membrane and wall to max 3

F partially permeable A selectively permeable and G (fully / freely / AW), permeable / porous;

F is partially permeable cell surface membrane

- 2 phospholipid (bilayer);
- 3 permeable to, lipid-soluble molecules / oxygen;

A other terms for lipid-soluble

treat reference to water as neutral

4 impermeable to, water-soluble / AW, molecules / ions / AW;

A other terms for water-soluble

treat reference to water as neutral

- 5 aquaporins / proteins, provide (increased) permeability to water;
- 6 transport proteins provide permeability to, ions / polar molecules;
 A channel / pore / carrier, proteins

G is permeable cell wall

- 7 cellulose;
- 8 fibres;
- 9 ref. to, spaces / gaps / holes / pores, (between, fibres / other cell wall components);

[max 4]

(e) 1 allows transport of, water / sucrose / amino acids / organic substances / ions /minerals / salts / lipids / hormones / ATP, (from cell to cell / between cells);

R if linked to an incorrect transport mechanism e.g. sucrose moves by osmosis

- without crossing, membranes / walls ; A without going through protein channels
- 3 this is movement through the symplast;
- 4 any e.g.; companion cell to (phloem) sieve tube (element / cell)

between mesophyll cells

mesophyll cell to companion cell

cortical cell to cortical cell / across cells of the cortex

cortical cell to endodermal cell

endodermal cell to, pericycle cell / xylem / phloem

ignore between sieve tube elements

5 allows, communication / signalling, between cells;

[max 3]

[Total: 14]