Replication and division of nuclei and cells Mark Scheme 1

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	The Mitotic Cell Cycle
Sub Topic	Replication and division of nuclei and cells
Booklet	Theory
Paper Type	Mark Scheme 1

Time Allowed:	66 minutes
Score $:$	$/ 55$
Percentage :	$/ 100$

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a one mark for the stages of the cell cycle in the correct sequence one mark for correct matching of each stage with a cell

stage of mitosis	label from Fig. 1.1
prophase	A/H ;
metaphase	G;
anaphase	C/E/F ;
telophase ;	;

(b) microtubules/spindle (fibres), attach to centromere/kinetochore (of chromosome during prophase); I metaphase arranging/aligning / orienting/AW, chromosomes at the equator/ metaphase plate ; $\quad \mathbf{R}$ centre fibres, shorten/contract/retract; A microtubules disassemble/AW move/pull, (sister) chromatids/(daughter) chromosomes, to opposite poles /centrioles;
idea that equal number of chromosomes in each daughter, nucleus/cell ;
(c) maintaining number of chromosomes; ensuring genetic stability / maintaining genetically identical cells/AW ; asexual reproduction;

A vegetative reproduction/cloning
cloning/ clonal expansion, of (named) lymphocytes ;
A B/T cells replacement of (worn out/dead/damaged) cells ; regeneration, of (named) tissues/organs ;
(wound) repair (of tissues); $\quad \mathbf{R}$ repair of cells
ref. to production of gametes ;
e.g. mitosis in gametogenesis/gamete production in plants

R 'copying of cells'
(d) (i) accept biological N fixation or Haber-Bosch process for mp1

1 either
converts, (inorganic) nitrogen/dinitrogen/ N_{2}, into organic nitrogen/ ammonia/ $\mathrm{NH}_{3} /$ ammonium $/ \mathrm{NH}_{4}{ }^{+}$; \mathbf{R} if nitrate given
or
lightning converts, nitrogen/ammonia/ $\mathrm{NH}_{3} /$ ammonium $/ \mathrm{NH}_{4}{ }^{+}$, into, nitrite/nitrate (ions);

2 reduces nitrogen/breaks triple bond ;
3 makes (fixed) nitrogen available to, legumes/other organisms/
community / AW ; A ref. to amino acids/proteins not to be awarded if it follows nitrification

4 increase soil fertility ;
5 balances the loss of fixed nitrogen in, denitrification/ocean deposits ;
(ii) 1 idea of decay/decomposition;
e.g. breakdown by, (saprophytic) bacteria/fungi

2 legumes eaten by, detritivores; A named detritivores
3 decomposers produce proteases ;
4 to, hydrolyse/convert/change/AW, protein to amino acids ;
5 amino acids are deaminated;
6 (amino acids) to, ammonia/ $\mathrm{NH}_{3} /$ ammonium (ions) $/ \mathrm{NH}_{4}{ }^{+}$;
7 nitrifying bacteria/Nitrosomonas, convert ammonia to nitrite (ions);
8 nitrifying bacteria/Nitrobacter, convert nitrite to nitrate (ions) ;
if mp7 or mp8 not awarded allow one mark for the following as mp9
9 (named) nitrifying bacteria convert, ammonia/ammonium, to nitrate (ions) ;
mp10 only to be awarded following nitrification
10 nitrate (ions) used for making, amino acids / proteins (hence increase in growth of cereals) ;

2 (a idea of cross-pollination involves two (parents)/self-pollination one (parent); ref. outbreeding/inbreeding ;
(two parents) have different, genotypes/sets of alleles ;
idea of new combinations of alleles in offspring ;
(b) (total) DNA/genome, cut into fragments ;
by restriction enzymes ;
DNA, denatured/made single stranded ;
ref. primers/(modified) PCR ;
ref. dideoxynucleotides/chain termination ;
DNA/Taq, polymerase ;
copies of different lengths produced ;
electrophoresis; A description
detection, of fluorescence / by laser scanner ;
sequence of, bases/nucleotides, read (by computer) ;
(c) cross(-pollinate) them ; A description
(if same species) offspring, are fertile/can themselves produce seeds; ora

3 (a (i) if one box of a pair left blank, no mark for that row mark first on row unless one row left completely blank

	mitosis	meiosis
1	diploid / two chromosome sets / 2n	haploid / one chromosome set /n
2	same number of chromosomes parent / AW	half the number of chromosomes as parent / AW
3	two, copies / alleles / forms, of each	one, copy / allele / form, of each
4	(cells) genetically identical (to, each A (cells have) same / AW, DNA / A no genetic variation	(cells) genetically different A (cells have) different / AW, DNA / genetic material A genetic variation

(ii) 1 for sexual reproduction ; A for, gamete / sperm and egg / pollen and ovum, formation or \mathbf{A} gametogenesis

2 to produce, haploid cells / cells with one set of chromosomes, for, fertilisation / fusion ; A to form zygote
A cells with half the number of chromosomes for, fertilisation / fusion
3 restores / AW, diploid / original, number when, fertilisation / fusion (of gametes) occurs ; only need ref. to fertilisation / zygote once

4 idea of ploidy consequences at fertilisation if not ;
e.g. ref. to doubling of chromosome number of origin

5 ref. genetic variation, linked to evolution / natural selection;
(b) (i) $13 \mu \mathrm{~m}$; ; two marks for correct calculation
(39 $000 / 3000$)
allow one mark
if calculation of $12.6 \mu \mathrm{~m}$ or $13.3 \mu \mathrm{~m}$ (i.e. measured as 38 mm or 40 mm and not rounded to nearest micrometre)
measurement of, $39 \mathrm{~mm} / 3.9 \mathrm{~cm}$, incorrectly converted to $\mu \mathrm{m}$ but correct formula used
(i.e. divided by 3000)
(ii) assume cancer cell unless stated otherwise
(undergoing) uncontrolled, mitosis / division ; A fast / rapid / abnormally
mitochondria, provide / produce, ATP ; R ATP energy
A provide energy
\mathbf{R} produce energy
RER, produce / synthesise / make / AW, (more), proteins / enzymes, for (cell) growth / mitosis / division ; if mp 1 gained, no need ref. to mitosis

4 (a growth (by increase in cell number);
production of genetically identical cells;
replacing (damaged) cells ;
repair (of tissue) ; allow 'regeneration' if mp3 and mp4 not awarded
\mathbf{R} repair cells
asexual reproduction;
A cloning A vegetative propagation
[max 3]
(b) one tick in each box ;
(c) appearance of chromosomes/condensation of chromatin/AW ; chromosomes visible as two, sister chromatids/chromatids joined by a centromere ; spindle formation/spindle fibres form/microtubules assemble/AW; centrioles, move to/reach, opposite poles ;
\mathbf{R} sides/ends
disappearance of nucleolus; disassembly/breakdown of, nuclear envelope ;
A nuclear membrane
(d) mitosis/prophase, will begin again, too soon/immediately ; uncontrolled/repeated, cell division/mitosis ; ignore (risk of), tumour formation/ cancerous growth ref. to consequences on the timing of the cell cycle ;
(a allow immunoglobulin for antibody

structure	name of structure	function of structure within plasma cell
A	$\begin{array}{l}\text { nucleus ; } \\ \text { A (eu)chromatin } \\ \text { R heterochromatin } \\ \text { R chromosome }\end{array}$	$\begin{array}{l}\text { ref. gene(s) / genetic information / genetic } \\ \text { material / DNA, (coding) for, antibody / } \\ \text { protein / polypeptide ; }\end{array}$
transcription (occurring) / mRNA synthesis ;		
AW (ref. antibodies)		
allow ecf for nucleolus		

[max 6]
(b) (i) 1 part of the immune response ; A primary / secondary, response many plasma cells
2 to produce high, concentration / level / AW, of, antibody / immunoglobulin ;
3 (high concentration antibody so) more effective against pathogens / AW ;
identical plasma cells
4 specific / particular / AW, to an, antigen / epitope ;
in context of antibodies or plasma cells
5 antibody (molecules) produced are all the same; A ora, qualified
6 only the gene coding for particular antibody, switched on / transcribed / expressed ;
(ii) accept from annotated diagrams
cell cycle stages are not required for mark points 1, 3, 4 and 7 reject if incorrect mitotic stage given for these mark points

1 ref. to, duplication / replication, of centrioles (in late interphase / before prophase);
A dividing
R splitting
2 (centriole pairs) move to opposite poles in prophase ;
accept asters or centrosomes for centrioles
3 (movement allows) spindle formation / organisation of spindle fibres / microtubule assembly / microtubule organisation / AW, (in prophase);
4 (late prophase / early metaphase / metaphase), chromosomes / centromeres, attach to, spindle fibres / microtubules ;
5 chromosomes, line up / aligned / AW, at, equator / metaphase plate ;
6 ref. separation of, sister / identical, chromatids, at anaphase (to poles) ;
A sister chromatids move to opposite poles at anaphase
A daughter chromosomes for sister chromatids
7 ref., pulling / shortening, by, microtubules / spindle fibres; AW

