Protein synthesis

Question Paper 4

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Nucleic acids and protein synthesis
Sub Topic	Protein synthesis
Booklet	Theory
Paper Type	Question Paper 4

Time Allowed: 56 minutes

Score : /46

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	′77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	Explain how	changes	in the nucleo	tide seque	ence of DN	NA may aff	ect the am	ino acid
		sequence in	a proteir	1.					[7]
	(b)	Explain how	natural s	election may b	ring about	evolution.			[8]
								[7	Total: 15
••••									
		CHI	R M	TSTE) V	ANTI	TAT	F	
••••									
••••									

2 Fig. 3.1 shows a molecule of haemoglobin.

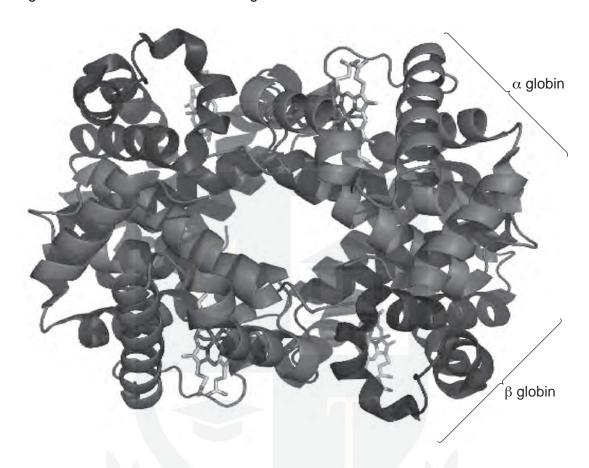


Fig. 3.1

(a)	Explain how a molecule of haemoglobin shows the four levels of organisation of protein molecules.
	primary structure
	CHEMISTRYONIINE
	secondary structure
	tertiary structure
	quaternary structure

There are many different variants of haemoglobin. The sequence of bases in DNA that code for the first seven amino acids in two variants of the β -globin polypeptide are shown in Fig. 3.2.

The genetic dictionary for some of the amino acids is in Table 3.1.

Variant 1

1	2	3	4	5	6	7
CAC	GTG	GAC	TGA	GGA	СТС	СТС

Variant 2

1	2	3	4	5	6	7
CAC	GTG	GAC	TGA	GGA	CAC	СТС

Fig. 3.2

Table 3.1

amino acid	abbreviation	DNA triplets on the coding polynucleotide
valine	val	CAA, CAC, CAG, CAT
proline	pro	GGA, GGC, GGG, GGT
threonine	thr	TGA, TGC, TGG, TGT
histidine	his	GTA, GTG
glutamic acid	glu	CTC, CTT
leucine	leu	AAC, AAT, GAA, GAC, GAG, GAT

(b)	Use the genetic dictionary to describe the similarities and differences between the two variants of haemoglobin.	/ O
		•••
		•••
	Γ	21

ues in animals.	ollagen is a fibrous protein found in	(c) Coll
f arteries.	State the function of collagen in	(i)
[1]		
collagen differs from the structure of	State one way in which the state haemoglobin.	(ii)
[1]		
[Total: 9]		

3 (a) Fig. 4.1 shows the structure of deoxyribose sugar.

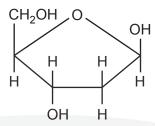


Fig. 4.1

State the differences between the structure of deoxyribose shown in Fig. 4.1 and the ring structure of α -glucose.

You may use the space below to help you in your answer.

[3]

(b) Match the biological macromolecule with the type of bond that is formed when the molecule is synthesised. Choose from the list below.

amylose	cell	yceride	otein	ylopectin

type of bond(s)	biological macromolecule
β,1-4 glycosidic	
α , 1-4 glycosidic and α , 1-6 glycosidic	
phosphodiester	
peptide	

[4]

) (k	Complete Table 4.1 to show four differences between DNA replication a								
t	trans	cription.							
			Table 4.1						
			re	plication			transc	ription	
	1				Ш				
	2								
	3								
	4								

Fig. 5.1 represents part of a DNA molecule. 4

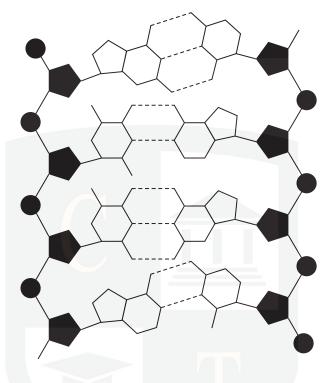


Fig. 5.1

- (a) On Fig. 5.1
 - (i) draw a box around a nucleotide

(ii) label, with the letter P, a phosphate group. [1]

[1]

)	Describe how a DNA molecule replicates.							
;)	DNA codes for polypeptides in cells. Transfer RNA (tRNA) is involved in this process.							
	Describe the role of tRNA in the production of polypeptides in cells.							
	CHEMICTOVONIINE							
	[Total: 1							